Math, asked by der20, 1 year ago

an isosceles triangle has perimeter 30 cm and each of the equal sides in 12 cm find the area of the triangle​

Answers

Answered by Eashwar04
4

Hey mate!

Check this picture out.

Hope this helps!

Attachments:
Answered by silentlover45
17

\underline\mathfrak{Given:-}

  • Perimeter of an Isosceles triangle 30 cm.
  • Two equal side is 12 cm.

\large\underline\mathfrak{To \: find:-}

  • Area of triangle ....?

\huge\underline\mathfrak{Solutions:-}

\: \: \: \: \: \therefore \: \: \: Perimeter \: \: of \: \: an \: \: Isosceles \: \: Triangle \: \: = \: \: {2} \: \times \: a \: + \: b

\: \: \: \: \: \leadsto \: \: {30} \: \: = \: \: {2} \: \times \: {12} \: + \: b

\: \: \: \: \: \leadsto \: \: {30} \: \: = \: \: {24} \: + \: b

\: \: \: \: \: \leadsto \: \: {b} \: \: = \: \: {30} \: - \: {24}

\: \: \: \: \: \leadsto \: \: {b} \: \: = \: \: {6} \: cm

\: \: \: \: \: \therefore \: \: Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-

  • \: \: \: \: \:  \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

  • a ⇢ 12cm

  • b ⇢ 12cm

  • c ⇢ 6cm

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{12} \: + \: {12} \: + \: {6}}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{30}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {15}

\: \: \: \: \: \therefore \: \: \: Area \: \: of \: \: triangular \: \: field:-

\: \: \: \: \: \leadsto \: \: \sqrt{{15} \: ({15} \: - \: {12}) \: ({15} \: - \: {12}) \: ({15} \: - \: {6})}

\: \: \: \: \: \leadsto \: \: \sqrt{{15} \: \times \: {(3)} \:  \times \: {(3)} \: \times  \: {(9)}}

\: \: \: \: \: \leadsto \: \: \sqrt{1215}

\: \: \: \: \: \leadsto \: \: {34.85} \: {cm}^{2}

\: \: \: \: \: Hence, \\ \: \: \: Area \: \: of \: \: triangle \: \: \leadsto \: \: {34.85} \: {cm}^{2}

\large\underline\mathfrak{More \: Information:-}

  • \: \: \: \: \: Perimeter \: \: of \: \: an \: \: Isosceles \: \: Triangle \: \: = \: \: {2} \: \times \: a \: + \: b.

  • \: \: \: \: \: Area \: \: of \: \: an \: \: isosceles \: \: triangle \: \: = \: \: \frac{1}{2} \: b \: \times \: h.

  • \: \: \: \: \: The \: \: altitude \: \: of \: \: an \: \: isosceles \: \: triangle \: \: = \: \: \sqrt{{a}^{2} \: - \: \frac{{b}^{2}}{4}}.

__________________________________

Similar questions