Physics, asked by preetichawla885, 5 months ago

An isotropic material of relative permittivity is placed normal to a uniform external electric field with an electric displacement vector of magnitude 6 * 10-4 C/m2 . If the volume of the slab is 0.7 m3 and magnitude of polarization is 5 *10-4 C/m2 . Find the value of PERMITTIVITY and total dipole moment of the slab.

Answers

Answered by talasilavijaya
0

Answer:

The value of permittivity is 53\times 10^{-12}F/m and dipole moment is 3.5 \times10^{-4}Cm.

Explanation:

Given magnitude of electric displacement vector, of  D=6 \times  10^{-4}  C/m^{2}

Magnitude of polarization,  is P=5\times 10^{-4}  C/m^{2}

Volume of the slab, V= 0.7 m^{3}

Electric permittivity of free space, \epsilon_{0} =8.85\times 10^{-12}  F/m

Polarization, P=\epsilon_{0} (\epsilon_{r}-1)E=\epsilon_{0} \epsilon_{r}E-\epsilon_{0}E=D-\epsilon_{0}E

\implies P=D-\epsilon_{0}E\implies 5 \times  10^{-4}  =6 \times  10^{-4}  -8.85\times 10^{-12} \times E

\implies E=\frac{1}{8.85\times 10^{-8}} =11.3\times 10^{6}V/m

From the constituent relation, D=\epsilon E\implies \epsilon=\frac{D}{E}    

\epsilon=\frac{6\times 10^{-4}}{11.3\times 10^{6}}=0.53\times 10^{-10}=53\times 10^{-12}F/m

Therefore, the value of permittivity is 53\times 10^{-12}F/m

Value of relative permittivity, \epsilon_{r}=\frac{\epsilon }{\epsilon_{0}} =\frac{53\times 10^{-12}}{8.85\times 10^{-12}}=5.98

Polarization(P) is also defined as induced dipole moment(p) per unit volume,

P=\frac{p}{V}\implies p=P\times V=5 \times10^{-4}  \times0.7 =3.5 \times10^{-4}Cm

Therefore, the dipole moment is 3.5 \times10^{-4}Cm

Similar questions