Physics, asked by aaliyakhannn1106, 6 months ago

An obiect of height 2 cms kept at a
distance of 30 cm from a convex lens
of focal length 20 cm Find the
position & nature of the image​

Answers

Answered by TheProphet
5

S O L U T I O N :

\underline{\bf{Given\::}}

  • Height of Object from lens, (h1) = 2 cm
  • Distance of object from lens, (u) = -30 cm
  • Focal length of the lens, (f) = 20 cm

\underline{\bf{Explanation\::}}

As we know that formula of the lens;

\boxed{\bf{\dfrac{1}{f} = \dfrac{1}{v} -\dfrac{1}{u} }}

A/q

\mapsto\tt{\dfrac{1}{f} =\dfrac{1}{v} - \dfrac{1}{u} }

\mapsto\tt{\dfrac{1}{20} =\dfrac{1}{v} - \dfrac{1}{(-30)} }

\mapsto\tt{\dfrac{1}{20} =\dfrac{1}{v} + \dfrac{1}{30} }

\mapsto\tt{\dfrac{1}{v} =\dfrac{1}{20} - \dfrac{1}{30} }

\mapsto\tt{\dfrac{1}{v} =\dfrac{3 - 2}{60}}

\mapsto\tt{\dfrac{1}{v} =\dfrac{1}{60}}

\mapsto\bf{v = 60\:cm}

∴ The distance formed of Image from lens will be 60 cm .

As we know that formula of the magnification;

\mapsto\bf{m = \dfrac{Height \:of\:Image\:(I)}{Height\:of\:Object\:(O)} = \dfrac{Distance\:of\:image}{Distance\:of\:Object} = \dfrac{v}{u} }

Now,

\longrightarrow\tt{m = \dfrac{h_2}{h_1} = \dfrac{-v}{u} }

\longrightarrow\tt{ \dfrac{h_2}{2} = \dfrac{-60}{-30} }

\longrightarrow\tt{ \dfrac{h_2}{2} = \cancel{\dfrac{-60}{-30}} }

\longrightarrow\tt{ \dfrac{h_2}{2} = 2}

\longrightarrow\tt{h_2 = 2 \times 2}

\longrightarrow\bf{h_2 = 4\:cm}

Thus,

The Image is virtual & erect and size of Image will be 4 cm .

Answered by vanshu0827
1

{\tt{\purple{\underline{\underline{\huge{Answer:}}}}}}

here is your answer

.

.

.

.

.

{\tt{\pink{\underline{\underline{\huge{Hope-it-helps}}}}}}

Attachments:
Similar questions