Physics, asked by mokipatel, 8 months ago

An object 1 cm tall is placed 30 cm in front of diverging mirror of focal length 20 cm.

Find the size and position of the image formed by it.​

Answers

Answered by veeramahi31124
1

Answer:

Hey mate here is ur answer. Refer photo

Attachments:
Answered by AdorableMe
3

GIVEN

An object 1 cm tall is placed 30 cm in front of diverging mirror of focal length 20 cm.

  • Object height ( \sf{h_o} ) = 1 cm
  • Image distance (u) = -30 cm
  • Focal length (f) = 20 cm

\underline{\rule{200}3}

TO FIND

The size and position of the image formed by the mirror.

\underline{\rule{200}3}

WE MUST KNOW

◙ Mirror formula :-

\displaystyle{\sf{\frac{1}{v}+\frac{1}{u}=\frac{1}{f}   }}

◙ Magnification :-

\sf{\dfrac{h_i}{h_o}=\dfrac{-v}{u}  }

\underline{\rule{200}3}

SOLUTION

​Using the formula :-

\displaystyle{\sf{\frac{1}{v}+\frac{1}{-30}=\frac{1}{20}   }}\\\\\displaystyle{\sf{\longrightarrow \frac{1}{v}-\frac{1}{30}=\frac{1}{20}   }}\\\\\displaystyle{\sf{\longrightarrow \frac{1}{v}=\frac{1}{20}+\frac{1}{30}    }}\\\\\displaystyle{\sf{\longrightarrow \frac{1}{v}=\frac{3+2}{60}   }}\\\\\displaystyle{\sf{\longrightarrow \frac{1}{v}=\frac{5}{60}   }}\\\\\displaystyle{\sf{\longrightarrow \frac{1}{v}=\frac{1}{10}   }}\\\\\boxed{\displaystyle{\sf{\longrightarrow v=12\ cm  }}}

\rule{130}2

\sf{Magnification = \dfrac{-v}{u} }

\sf{\longrightarrow Magnification=\dfrac{-12}{-30} }\\\\\sf{\longrightarrow Magnification=\dfrac{2}{5} }\\\\\boxed{\sf{\longrightarrow Magnification=0.4\ cm}}

\rule{130}2

Now,

\sf{\dfrac{h_i}{h_o}=\dfrac{-v}{u}  }\\\\\sf{\longrightarrow \dfrac{h_i}{1}=\dfrac{-12}{-30}  }\\\\\sf{\longrightarrow \dfrac{h_i}{1}=\dfrac{-12}{-30}  }\\\\\sf{\longrightarrow h_i=\dfrac{12}{30}  }\\\\\sf{\longrightarrow h_i=\dfrac{2}{3} }\\\\\boxed{\sf{\longrightarrow h_i=1.5\ cm}}

CONCLUSION :-

  • The image is 12 cm on the right side of the convex mirror.
  • The image is a virtual and erect image, as the magnification is positive.
  • The image size (h\sf{_i}) is greater than the object size (h\sf{_o}), so the image if magnified.
Similar questions