Physics, asked by madhurjya54, 4 months ago

an object 5 cm in length is placed at a distance of 20cm in front of concave mirror of radius of curvature 30cm.Find the position of the image‚ its nature and size​

Answers

Answered by SarcasticL0ve
32

Given:

  • Height of object, \sf h_o = 5 cm
  • Object distance, u = - 20 cm
  • Radius of curvature, R = 30 cm
  • Focal length, f = R/2 = 30/2 = - 15 cm

To find:

  • Position of image, it's nature and size?

Solution:

\dag\;{\underline{\frak{Using\;mirror\;formula\;:}}}\\ \\

\star\;{\boxed{\sf{\purple{ \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}}}}\\ \\

:\implies\sf \dfrac{1}{- 15} = \dfrac{1}{v} + \dfrac{1}{- 20}\\ \\

:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} - \dfrac{1}{ - 20}\\ \\

:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} + \dfrac{1}{20}\\ \\

:\implies\sf \dfrac{1}{v} = \dfrac{- 4 + 3}{60}\\ \\

:\implies\sf \dfrac{1}{v} = \dfrac{- 1}{60}\\ \\

:\implies{\boxed{\frak{\pink{v = - 60\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Image\;distance\;is\; \bf{- 60\;cm}.}}}\\ \\

Nature of image:

  • Image is virtual and erect.
  • Image formed behind the mirror.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━

Size of image,

\dag\;{\underline{\frak{Using\; Formula\;of\;magnification\;:}}}\\ \\

\star\;{\boxed{\sf{\purple{ \dfrac{h_i}{h_o} = \dfrac{v}{u}}}}}\\ \\

:\implies\sf \dfrac{h_i}{5} = \cancel{ \dfrac{- 60}{20}}\\ \\

:\implies\sf h_i =  - 3 \times 5\\ \\

:\implies{\boxed{\frak{\pink{h_i = - 15\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Height\;or\;size\;of\;image\;is\; \bf{- 15\;cm}.}}}


Rythm14: Perfect ✨
Answered by Anonymous
4

Heya !

Given:-

  • Height of the object = 5cm.
  • Object Distance (u) = -20cm.
  • Radius of curvature (r) = -30cm.
  • so, f = -30/2 = -15

To find:-

  • Position, Size and Nature of the image.

Formula to be used :-

\huge \fbox \blue{1/v-1/u=1/f}

Solution:-

\implies 1/v = 1/f+1/u

\implies 1/v = 1/-15+1/-20

\implies 1/v = -4+3 /60

\implies 1/v = -1/60

\implies v = -60 cm.

  • the image is at a dist. of 60cm. in front of the mirror.
  • this shows that the image is beyond C.
  • it's -ve sign shows that it is real and inverted.

Size of the image:-

Formula to be used here:-

\huge \fbox \blue{m= -v/u}

Where,

  • m = magnification
  • v = image Distance
  • u = object distance

\implies m = -(-60)/-30

\implies m = -2

when, m is greater than 1 it shows that the image is greater than the object.

  • Hence, the image is enlarged as well.

Similar questions