Physics, asked by Anonymous, 6 months ago

An object 5cm high is placed at a distance of 10 cm from a convex mirror of radius of curvature 30 cm. Find the nature, position, anf size of the image​

Answers

Answered by Anonymous
9

Solution:-

  \underline{\rm \: given}

 \rm \:  \to \: h_0 = 5cm

 \rm \to \: R = 30cm

We know that

  \to \: \rm \:  f =  \dfrac{R}{2}  =  \dfrac{30}{2}  = 15cm

   \to\rm \: object \: distance \: (u) = 10cm \:

  \red{\underline {\rm using \: sign \: convention}}

1) All distance measured from pole

2) Distance measured in the direction of incidents ray are taken as positive

So U is the opposite to Incident ray

\rm  \to\: object \: distance \: (u) = -  10cm \:

as we know that focal length is always positive in convex lens so

 \rm \: focal \: length \: (f) =  + 15cm

 \red{  \underline{ \rm \: formula}}

 \implies \boxed{ \rm \:  \dfrac{1}{f}  =  \dfrac{1}{v}  +   \dfrac{1}{u} }

 \rm \to \:  \dfrac{1}{15}  =  \dfrac{1}{v}   -  \dfrac{1}{10}

 \rm \:  \to \:  \dfrac{1}{v}  =  \dfrac{1}{15}  +  \dfrac{1}{10}

  \to\rm \:  \dfrac{1}{v}  =  \dfrac{2 + 3}{30}

 \rm \:  \to \:  \dfrac{1}{v}  =  \dfrac{5}{30}

 \boxed{ \to \rm \: v =  + 6cm}

 \rm \: magnification \: (m \: ) =  \dfrac{ - v}{u}

 \rm \to \: m \:  =   \dfrac{ - 6}{ -10 }  =  \dfrac{2}{5}

 \rm \: magnification \: (m \: ) =  \dfrac{ h_i}{h_o}

 \rm \:  \to \:  \dfrac{2}{5}  =  \dfrac{h_i}{5}

 \rm \:   \to \: h_i = 2cm

 \rm i)position \: of \: the \: image = behind \: the \: mirror

 \rm \: ii)nature \: of \: image \:  =  \: virtual \: and \: erect

 \rm \: iii)size \: of \: image \:  =  \: smaller \: than \: object

Similar questions