Physics, asked by krishna5877, 10 months ago

an object is placed perpendicular to the principal axis of a convex lens of foacl length 8 cm. the distence of the object from lens is 12 cm find position and nature of image... Guys plss hlp ​

Answers

Answered by Anonymous
60

Given :

  • Focal length of convex lens is 8 cm.
  • The distance of the object from lens, u = -12 cm.

To Find :

  • Position of image.
  • Nature of the image.

Solution :

Using the lens formula,

\large{\boxed{\sf{\dfrac{1}{f}\:=\:\dfrac{1}{v}-\dfrac{1}{u}}}}

Block in the values,

\longrightarrow \sf{\dfrac{1}{8}=\dfrac{1}{v}-\dfrac{1}{-12}}

\longrightarrow \sf{\dfrac{1}{8}\:=\:\dfrac{-12-v}{-12v}}

\longrightarrow \sf{-12v=8(-12-v) }

\longrightarrow \sf{-12v=-96-8v}

\longrightarrow \sf{-12v+8v=-96}

\longrightarrow \sf{-4v=-96}

\longrightarrow \sf{4v=96}

\longrightarrow \sf{v=\dfrac{96}{4}}

\longrightarrow \sf{v=24}

\large{\boxed{\sf{Position\:of\:image\:=\:24\:cm\:on\:+X\:of\:optical\:centre\:}}}

\large{\boxed{\sf{Nature\:of\:image\:is\:real\:and\:inverted}}}

Answered by Anonymous
3

Explanation:

Given:

✍️Focal length of convex lens (f) is 8 cm.

✍️ Distance of the object from lens (u) is 12cm .

Formula used:

 \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}

To find:

position and nature of image.

Solution:

 \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}

 \frac{1}{8}  =  \frac{1}{v}  -  \frac{1}{ - 12}

 \frac{1}{8}  =  \frac{ - 12 - v}{ - 12v}

 - 12v =  - 96 - 8v

 - 12v + 8v = 96

4v = 96

v =  \frac{96}{4}

v = 24

✴️The positive sign of v shows that the images is formed at a distance of 24 cm on the other side of optical centre.

✴️The images is real and inverted.

Similar questions