Math, asked by krishkumar77, 2 months ago

An object of
5.0 cm in size is placed at a distance of 20.0 cm from a concave mirror of focal length of
15.0 cm . At what distance from the mirror should the screen be placed to obtain a sharp image? Also
calculate the size of the image.​

Answers

Answered by BrainlyWizzard
13

_________ [ Given ]

• h' = ( height of object ) = 5 cm

• u = ( object distance ) = - 20.0 cm = - 20 cm

• f = ( focal length ) = - 15 cm

_________ [ Find ]

  • We have to find the distance of the image from mirror (v) and height of the image (h).

_________ [ Note ]

  • Converging mirror means cancave mirror

==================================

We know that....

\boxed{ \purple{:\longmapsto}\rm \dfrac{1}{f} \: = \: \dfrac{1}{v} \: - \: \dfrac{1}{u}}

( Mirror Formula )

Put the known values in above equation :

 \purple{: \implies}\rm\dfrac{1}{-15} \: = \: \dfrac{1}{v} \: - \: \dfrac{1}{-20}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{: \implies}\rm\dfrac{-1}{15}+ \dfrac{(-1)}{20}  =  \dfrac{1}{v}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{: \implies} \rm \dfrac{1}{v}  = \dfrac{ - 4 + 3}{60}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{: \implies} \rm \dfrac{1}{v} = \dfrac{1}{60}

 \:  \:  \:  \:  \:  \purple{:  \: \longmapsto} \boxed{\boxed{\rm \: v = 60 \: cm}}

=======================================

Now...

 \:  \:  \:  \:  \: \boxed{ \rm*\:m\:=\:\dfrac{-v}{u}\:=\:\dfrac{h}{h'}}

 \:  \:  \:  \:  \:  \:  \: \red{: \implies}\rm\dfrac{-60}{20} =  \dfrac{h}{5}

 \:  \:  \:  \:  \:  \:  \:  \red{ : \implies}  \rm\dfrac{h}{5}  =  - 3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \: \boxed{ \rm\purple{\underline{h \:=\: - 15 \:cm}}} \: \dag

Similar questions