Physics, asked by lngbngrisa, 8 months ago

an object of a mass 100 kg is accelerated uniformly from a velocity of 5 m/s to 8 m/s in 6 seconds.Calculate the magnitude of the force,exerted on the object

Answers

Answered by tarracharan
9

{\huge{\underline{\blue{Given:}}}}

mass m = 100 kg

initial velocity u = 5 m/s

final velocity v = 8 m/s

time t = 6 sec

{\huge{\underline{\pink{To \: Find:}}}}

Magnitude of force

{\huge{\underline{\orange{Formula:}}}}

v = u + at ; F = ma

{\huge{\underline{\green{Solution:}}}}

v = u + at

8 = 5 + a(6)

a = 3/6 = 1/2 m/s²

__________________________

F = ma

F = 100 × 1/2

F = 50N

{\underline{\red{Answer: \: 50N}}}

Answered by Anonymous
14

To Find :

The Rate of change of Momentum.

Given :

  • Mass of the Body = 100 kg

  • Initial Velocity = 5 m/s

  • Final velocity = 8 m/s

  • Time Taken = 6 s

We Know :

MaGnitude of Force :

\implies \bf{\boxed{Rate\:of\:Momentum = \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}}

Where,

  • \bf{p_{1} = Initial Momentum

  • \bf{p_{2} = Final Momentum

  • ∆ t = Change in time .

Solution :

  • m = 100 kg

  • u = 5 m/s

  • v = 8 m/s

  • t = 6 s

Using the formula and substituting the values in it , we get :

\bf{\boxed{Rate\:of\:Momentum = \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{m\overrightarrow{v} - m\overrightarrow{u}}{\Delta t}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{m(v - u)}{t}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{100 \times (8 - 5)}{6}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{100 \times 3}{6}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{100 \times \not{3}}{\not{6}}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = \dfrac{100}{2}} \\ \\ \\ \implies \bf{Rate\:of\:Momentum = 50 N} \\ \\ \\ \therefore \purple{\bf{Rate\:of\:Momentum = 50 N}}

Hence, the magnitude of the force is 50 N.

Similar questions