Physics, asked by rgswamys, 1 month ago

an object of height 100 cm is placed at a distance of 50 cm in front of a convex mirror of focal length is 25 cm find image distance and its height.​

Answers

Answered by mahanteshgejji
1

Answer:

Image distance =  16.67 cm behind the mirror

Image height h₂ = 33.33 cm

Explanation:

height of object h₁ =₁ 100 cm

object distance  u= - 50 cm

focal length f = + 25 cm

From Mirror formula

\frac{1}{v} + \frac{1}{u}  = \frac{1}{f}

\frac{1}{v}  - \frac{1}{50} = \frac{1}{25}

\frac{1}{v}  = \frac{1}{25} + \frac{1}{50}  = 3/50

v = 50/3 cm = + 16.67 cm

magnification m = - v/u = h₂/h₁

               Height of image h₂ = -(v/u) x h₁

                                                = - [(50/3)/(-50)] x 100

                                                = + 100/3 cm

                                                = 33.33 cm

Image distance =  16.67 cm behind the mirror

Image height h₂ = 33.33 cm

     

Answered by AestheticSoul
2

Required Answer :

  • The image distance = 16.67 cm
  • The height of the image = 33.33 cm

Given :

  • Height of object = 100 cm
  • Object distance = - 50 cm
  • Focal length = 25 cm

To find :

  • Image distance
  • Height of the image

Solution :

Calculating the image distance :

Using formula :

\red \bigstar \quad \underline{\boxed{\bf \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}}}

where,

  • v denotes the image distance
  • u denotes the object distance
  • f denotes the focal length

we have,

  • u = - 50 cm
  • f = 25 cm

Substituting the given values :

\\ \quad : \implies \sf \dfrac{1}{v} + \dfrac{1}{- 50} = \dfrac{1}{25}

\\ \quad : \implies \sf \dfrac{1}{v} - \dfrac{1}{ 50} = \dfrac{1}{25}

\\ \quad : \implies \sf \dfrac{1}{v} = \dfrac{1}{25} +  \dfrac{1}{50}

\\ \quad : \implies \sf \dfrac{1}{v} = \dfrac{2 + 1}{50}

\\ \quad : \implies \sf \dfrac{1}{v} = \dfrac{3}{50}

\\ \quad : \implies \sf \: v \: = \dfrac{50}{3}

\\ \quad : \implies \sf \: v \: = 16.67

\red \bigstar \underline{\boxed{\sf{The \:  \:  image  \:  \: distance  \: = 16.67 \:  cm}}}

Using formula :

\red \bigstar \underline{\boxed{\bf m = - \dfrac{v}{u}}}

where,

  • m denoted the magnification
  • v denotes the image distance
  • u denotes the object distance

we have,

  • v = 50/3 cm
  • u = - 50 cm

Substituting the given values :

\\ \quad : \implies  \sf m = - \dfrac{50}{3} \div - 50

\\ \quad : \implies  \sf m = - \dfrac{50}{3}  \times  \dfrac{1}{ - 50}

\\ \quad : \implies  \sf m =  \dfrac{50}{3}  \times  \dfrac{1}{  50}

\\ \quad : \implies  \sf m =  \dfrac{1}{3}

Using formula,

\red \bigstar \underline{\boxed{\bf m = \dfrac{h}{h'}}}

where,

  • h denotes the object height
  • h' denotes the image height

we have,

  • m = 1/3
  • h = 100 cm

Substituting the given values :

\\ \quad : \implies  \sf  \dfrac{1}{3}  = - \dfrac{100}{h'}

\\ \quad : \implies  \sf  h' =  \dfrac{100}{3}

\\ \quad : \implies  \sf  h' =  33.33

\red \bigstar \underline{\boxed{\sf{The \:  \:  height  \:  \: of ~~the ~~image \: = 33.33 \:  cm}}}

Similar questions