Physics, asked by shivamdas6, 9 months ago

an object of hieght 4cm is placed at 40cm from concave lens of focal length 20cm . calculate the position of the image and size of the image.


plz solve this. need urgently​

Answers

Answered by Anonymous
44

Figure refer to attachment

Given

An object of height 4cm is placed at 40cm from concave lens of focal length 20cm .

To find

calculate the position of the image and size of the image.

Solution

  • height of object (ho) = +4cm
  • Distance of object (u) = - 40cm
  • focal length (f) = -20cm
  • Image distance (v) = ?
  • Height of image (hi) = ?

According to lens formula

\implies\sf \dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f} \\ \\ \\ \implies\sf \dfrac{1}{v}-\dfrac{-1}{40}=\dfrac{-1}{20} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{-1}{40}-\dfrac{1}{20} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{-1-2}{40} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{-3}{40} \\ \\ \\ \implies\sf v=-13.3cm

Now,

  • v = -13.3cm
  • ho = +4cm
  • hi = ?

\implies\sf m=\dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{-13.3}{-40}=\dfrac{h_i}{4} \\ \\ \\ \implies\sf h_i=\dfrac{4\times{13.3}}{40} \\ \\ \\ \implies\sf h_i=+1.3cm

Nature of image

  • Nature = Virtual and erect
  • Size = Diminished
  • Position = b/w F1 and optical centre

Hence, the position of image is -13.3cm and the size of image is +1.3cm

Attachments:

VishalSharma01: Awesome As Always :)
Answered by AdorableMe
43

\large \dag\ \underline{\mathbb{GIVEN :-}}

\textsf{An object of height 4 cm is placed at 40 cm from  }\\\textsf{concave lens of focal length 20 cm.}

\bullet\ \sf{Size/Height\ of\ the\ object(h_o)=4\ cm}

\bullet\ \sf{Object\ distance(u)=-40\ cm}

\bullet\ \sf{Focal\ length(f)=-20\ cm}

\large \dag\ \underline{\mathbb{TO\ CALCULATE :-}}

\textsf{The position and the size of the image.}

\large \dag\ \underline{\mathbb{FORMULAS\ TO\ BE\ USED :-}}

\underline{\sf{\bigstar\ LENS\ FORMULA:-}}

\displaystyle{\sf{\frac{1}{v}-\frac{1}{u}=\frac{1}{f}   }}

\underline{\sf{\bigstar\ MAGNIFICATION:-}}

\sf{m=\dfrac{v}{u}=\dfrac{h_i}{h_o}  }

\large \dag\ \underline{\mathbb{SOLUTION:-}}

\textsf{Using the lens formula :-}

\displaystyle{\sf{\frac{1}{v}-\frac{1}{u} =\frac{1}{f}  }}

\displaystyle{\sf{\longmapsto \frac{1}{v}=\frac{1}{-20}+\frac{1}{-40}   }}\\\\\\\displaystyle{\sf{\longmapsto\ \frac{1}{v}=\frac{-1}{20}-\frac{1}{40}   }}\\\\\\\displaystyle{\sf{\longmapsto \frac{1}{v}= \frac{-2-1}{40} }}\\\\\\\displaystyle{\sf{\longmapsto \frac{1}{v}=\frac{-3}{40}  }}\\\\\\\boxed{\displaystyle{\sf{\longmapsto v=\frac{-40}{3} \ cm}}\\\\\\}

\rule{150}2

\sf{Now,}

\displaystyle{\sf{m=\frac{v}{u}=\frac{h_i}{h_o}  }}\\\\\\\displaystyle{\sf{\longmapsto \frac{\frac{-40}{3} }{-40}=\frac{h_i}{4}  }}\\\\\\\displaystyle{\sf{m=\frac{v}{u}=\frac{h_i}{h_o}  }}\\\\\\\displaystyle{\sf{\longmapsto \frac{1}{3}=\frac{h_i}{4}  }}\\\\\\\displaystyle{\sf{m=\frac{v}{u}=\frac{h_i}{h_o}  }}\\\\\\\displaystyle{\sf{\longmapsto h_i=\frac{4}{3} }}

\boxed{\displaystyle{\sf{\longmapsto h_i=1.33\ cm}}}

\underline{\textbf{Therefore, the image is -40/3 cm from the }}\\\underline{\textbf{lens and its size is 1.33 cm.}}


VishalSharma01: Nice :)
Similar questions