Physics, asked by wwwvaibhav88, 9 months ago

An object of mass 0.5 kg is tied to a string and revolved in a horizontal circle of radius 1m. If the breaking tension of the string is 50 N, what is the maximum speed the object can have?​

Answers

Answered by Anonymous
11

GIVEN :

  • Mass, m = 0.5 kg.
  • Radius of a circle, r = 1 m.
  • Breaking tension of the spring, T = 50 N.

TO FIND :

  • Maximum speed of the object, \sf V_{max} = ?

FORMULA USED :

  • \sf T \: = \: \dfrac{mv^2_{max}}{radius}
  • \sf V_{max} \: = \: \sqrt{\dfrac {Tr}{m}}

Here,

m = mass of an object.

T = Tension of the spring.

r = radius of the circle.

\sf V_{max} = maximum velocity.

SOLUTION :

\implies \sf T \: = \: \dfrac{mv^2_{max}}{radius}

\implies \sf V_{max} \: = \: \sqrt{\dfrac {Tr}{m}}

\implies \sf V_{max} \: = \: \sqrt{\dfrac {50 \ \times \ 1}{0.5}}

\implies \sf V_{max} \ = \ \sqrt{100}

\implies \sf V_{max} \ = \ 10 \: m/s^{2}

•°• Therefore, the maximum speed the object have is 10 \: m/s^{2}

Similar questions