Physics, asked by LuckyLokeshLive, 1 year ago

An object of mass 3kg is at rest. Now a force F=6t^2î+2t j N is applied on the object. Find the velocity of the object at t=3sec

Answers

Answered by payalchatterje
0

Answer:

Velcity of a object at t=3sec is 21 m/s.

Explanation:

F = m \frac{dv}{dt} = 6t^{2} i  +2t j

\frac{dv}{dt} = ( 6t^{2} i  +2t j )/3 = 2t^{2} i + (2/3)t j

dv = [ 2t^{2} i + (2/3)t j ] dt

Taking integration both sides,

\int\limits^v_0 \ dv = \int\limits^3_0 {2t^{2}  } \, dx

\int\limits^v_0 \ dv = \int\limits^3_0 {[ 2t^{2} \uvec{i}  + (2/3)t  j] } \, dt

→ v = [ \frac{2t^{3} }{3} + \frac{2}{3} * \frac{t^{2} }{2}] at t = 3 sec

→ v = [18 + 3]= 21 m/s

Answered by talasilavijaya
1

Answer:

Velocity of the object at 3s is 18  \hat{i} +3 \hat{j}  m/s

Explanation:

Given mass of an object, m=3kg

         force applied on the object, F=6t^{2} \hat{i} +2t \hat{j} N

         time, t=3sec

From the relation of force, F=ma

acceleration is given by a=\frac{F}{m}

                                          =\frac{6t^{2} \hat{i} +2t \hat{j} }{3}=2t^{2} \hat{i} +\frac{2t \hat{j}}{3}

Acceleration is defined as rate of change of velocity, i.e.,

                                a=\frac{dv}{dt}

                       \implies \frac{dv}{dt}=2t^{2} \hat{i} +\frac{2t \hat{j}}{3}

                       \implies {dv}=2t^{2} \hat{i} +\frac{2t \hat{j}}{3}dt

Integrating both sides, between the time 0 to 3s,

                    \implies \int {dv}=\int\limits^3_0 (2t^{2} \hat{i} +\frac{2t \hat{j}}{3})dt

                        \implies v=\frac{2t^{3}}{3}  \hat{i} \Big|\limits^3_0+\frac{2t^{2}  \hat{j}}{6}) \Big|\limits^3_0

                                   =\frac{2\times 3^{3}}{3}  \hat{i} +\frac{2\times 3^{2} }{6} \hat{j}

                                   =18  \hat{i} +3 \hat{j}  m/s

Therefore, the velocity of the object at 3s is 18  \hat{i} +3 \hat{j}  m/s

Similar questions