Math, asked by abhijeetkr21, 7 months ago


- An object of size 7.0 cm is placed at 27 cm in front of a concave mirror of focal length
18 cm. At what distance from the mirror should a screen be placed so that a sharp focussed image can be
obtained ? Find the size and nature of image.

Answers

Answered by krishnakumaranmol
8

Answer:

Mirror formula :

 v1+u1=f1...........(1)

So, u=−27cm

Concave mirror have negative focal length.

f=−18cm

Putting the values in (1),

v1+−271=−181

We get , v=−54cm

Also,

Magnification = h1h2=u−v

7.0h2=−−27−54

h2=−14.0cm

Image will be real and inverted and will be of size 14 cm.

Answered by Anonymous
9

•GIVEN:-

 \bf\:➠ Object \: distance \: ,u=-27cm \\

 \bf  {➠Object  \:  height,h=7cm} \\

 \bf ➠Focal \: length=-18cm \\  \\

 \bf \large\underline{\overline{FORMULA \: USED⇓⇓}} \\

 \bf \boxed{➣ \frac{1}{f}  =  \frac{1}{v}  +  \frac{1}{u}  }\\  \\

SOLUTION :-

  \frac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u}  \\  \\

 \frac{1}{v} =   \bf \:  \frac{1}{( - 18)}  -  \frac{1}{ (- 27)}  \\  \\

 \frac{1}{v}  =  \bf \:  \frac{1}{( - 18)}  +  \frac{1}{27}  \\  \\

 \frac{1}{v}  =  \frac{( - 3 + 2)}{54}  =  \frac{ - 1 \:  \: }{54 }  \\  \\

 \boxed { \therefore \: v =  \bf \: 54cm } \\  \\

•The screen should be placed at a distance of 54cm in front of the given mirror

 \bf \: ➽Magnification(m) = \frac{Image \: distance}{Object \: distance}  \\  \\

 \bf \: m =  \frac{ - 54}{ - 27}  =  - 2 \\  \\

•Negative value of magnification shows that image is real.

 \bf \: m =  \frac{Height \: of \: image}{Height \: of \: object}  = \frac{h_1}{h}  \\  \\

 \bf ➠h_1=m×h=(-2)×7=-14cm \\  \\ </p><p></p><p>

➽The height of the image is negative which shows that image is inverted.

☆Drag your screen ➠ to view full answer.

Similar questions