Physics, asked by Jas41, 1 year ago

An object of size 7.0 cm is placed at 27 CM in front of a concave mirror of focal length 18 cm.At what distance from the mirror should a screen be placed, so that I sharp focus image is obtained? find the size and nature of the image.

Answers

Answered by Jennydsilva
2
Ho=7cm
u= -27cm
f= -18cm
v=?
Hi=?

Mirror formula:1/f=1/v+1/u
-1/18=1/v-1/27
1/v=1/27-1/18
1/v=-1/54
v=-54cm

Magnification: -v/u=Hi/Ho
-(-54)/-27=Hi/7
Hi=-14cm

Hope it helps.
Answered by Anonymous
4

•GIVEN:-

 \bf\:➠ Object \: distance \: ,u=-27cm \\

 \bf  {➠Object  \:  height,h=7cm} \\

 \bf ➠Focal \: length=-18cm \\  \\

 \bf \large\underline{\overline{FORMULA \: USED⇓⇓}} \\

 \bf \boxed{➣ \frac{1}{f}  =  \frac{1}{v}  +  \frac{1}{u}  }\\  \\

SOLUTION :-

  \frac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u}  \\  \\

 \frac{1}{v} =   \bf \:  \frac{1}{( - 18)}  -  \frac{1}{ (- 27)}  \\  \\

 \frac{1}{v}  =  \bf \:  \frac{1}{( - 18)}  +  \frac{1}{27}  \\  \\

 \frac{1}{v}  =  \frac{( - 3 + 2)}{54}  =  \frac{ - 1 \:  \: }{54 }  \\  \\

 \boxed { \therefore \: v =  \bf \: 54cm } \\  \\

•The screen should be placed at a distance of 54cm in front of the given mirror

 \bf \: ➽Magnification(m) = \frac{Image \: distance}{Object \: distance}  \\  \\

 \bf \: m =  \frac{ - 54}{ - 27}  =  - 2 \\  \\

•Negative value of magnification shows that image is real.

 \bf \: m =  \frac{Height \: of \: image}{Height \: of \: object}  = \frac{h_1}{h}  \\  \\

 \bf ➠h_1=m×h=(-2)×7=-14cm \\  \\ </p><p></p><p>

➽The height of the image is negative which shows that image is inverted.

☆Drag your screen ➠ to view full answer.

Similar questions