An open metal bucket is in the shape of a frustum of a cone if the diameter
Answers
Answer:
Area of metallic sheet used = CSA of Frustum + CSA of Cylinder + CSA of Base
CSA of Frustum -
Diameter of the bigger circular end = 45 cm
Radius = 45/2 = 22.5 cm
Diameter of the smaller circular end = 25 cm
Radius = 25/2 = 12.5 cm
Height of the frustum = Total height of the bucket - Height of the circular base
⇒ 40 - 6 = 34 cm
Slant Height = l √h² + (r1² - r2²)²
⇒ √34² + (22.5 - 12.5)²
⇒ √1156 + (10)²
⇒ √1156 + 100
⇒ √1256
⇒ Slant Height = 35.44 cm
CSA of Frustum = π(r1 + r2)l
⇒ 22/7*(22.5 + 12.5)*35.44
⇒ 22/7*35*35.44
= 3898.4 cm²
Area of Circular Base -
Base is a circular part with radius 25/2 = 12.5 cm
Area of circular base = πr²
⇒ 22/7*12.5*12.5
491.07 cm²
CSA of Cylinder = 2πrh
⇒ 2*22/7*12.5*6
⇒ 471.428
Area of metallic sheet used = 3898.4 cm² + 491.07 cm² + 471.428
= 4860.898 cm²