Physics, asked by dub71jellyfish, 1 year ago

analytical method of vector...fix

Answers

Answered by pooja5719
1
here ur answer goes...

see the attachment above...

. identify the x rays and y rays of the problem...

. Find the components of resulting

along each axis by adding the components of...

thx.

follow me..

if u like my answer.. mark as brainlist

❤❤
Attachments:
Answered by Anonymous
5

Analytical Method of Vector Addition :  

From ΔBDC,  

 \mathsf{\dfrac{BD} {BC}\:=\:cos\:{\theta}}    \mathsf{BD\:=\:BC\:cos\:\theta}    \mathsf{BD\:=\:|\vec{B}|\:cos\:\theta}    \mathsf{BD\:=\:B\:cos\:\theta}    \mathsf{\dfrac{DC} {BC}\:=\:sin\:{\theta}}    \mathsf{DC\:=\:BC\:cos\:\theta}    \mathsf{DC\:=\:|\vec{B}|\:sin\:\theta}    \mathsf{DC\:=\:B\:sin\:\theta}  

 From ΔADC,

 \mathsf{{AC}^{2}\:=\:{AD}^{2}\:+\:{DC}^{2}}

 \mathsf{{|\vec{R}|}^{2}\:=\:{(\:AB\:+\:BD\:)}^{2}\:+\:{(DC)}^{2}}

 \mathsf{{R}^{2}\:=\:{(\:A\:+\:cos\:\theta\:)}^{2}\:+\:{(\:B\:sin\:\theta\:)}^{2}}

 \mathsf{{R}^{2}\:=\:{A}^{2}\:+\:{B}^{2}\:{cos}^{2}\:theta\:+\:2\:AB\:cos\:\theta\:+\:{B}^{2}\:{sin}^{2}\:\theta}  

\mathsf{\boxed{R\:=\:{\sqrt{{A}^{2}\:+\:{B}^{2}\:+\:2\:AB\:cos\:\theta}}}}

Attachments:
Similar questions