Math, asked by esha100, 11 months ago

anawer the following ​

Attachments:

Answers

Answered by Anonymous
11

Solution:

Step-by-step explanation:

Given :

\large \text{$sin \ A=\dfrac{1}{3} $}

We know that

\large \text{$sin \ A=\dfrac{Perpendicular}{hypotenuse} $}

We have pythagoras theorem

\large \text{$H^2=P^2+B^2$}

Putting values here we get

\large \text{$3^2=1^2+B^2$}\\\\\\\large \text{$9=1+B^2$}\\\\\\\large \text{$B=\sqrt{9-1}$}\\\\\\\large \text{$B=\sqrt{8}$}\\\\\\\large \text{$B=2\sqrt{2}$}

Now for other ratio equal to

\large \text{$cos \ A=\dfrac{base}{hypotenuse}=\dfrac{2\sqrt2}{3}$}\\\\\\\large \text{$tan \ A=\dfrac{perpendicular}{base}=\dfrac{1}{2\sqrt2}=\dfrac{2\sqrt2}{8} $}\\\\\\\large \text{$cot \ A=\dfrac{base}{perpendicular}=\dfrac{2\sqrt2}{1}=2\sqrt2$}\\\\\\\large \text{$sec \ A=\dfrac{hypotenuse}{base}=\dfrac{3}{2\sqrt2}$}=\dfrac{6\sqrt2}{8} \\\\\\\large \text{$cosec \ A=\dfrac{hypotenuse}{perpendicular}=\dfrac{3}{1}=3$}

Thus we get answer.

Similar questions