α,β and ¥ are roots of cubic polynomial ax^3+bx^2+cx+d then 1/αβ+1/β¥+1/¥α
Answers
EXPLANATION.
α,β,γ are the roots of the polynomial,
⇒ F(x) = ax³ + bx² + cx + d.
As we know that,
Sum of zeroes of the cubic equation,
⇒ α + β + γ = -b/a.
Products of zeroes of cubic polynomial two at a time,
⇒ αβ + βγ + γα = c/a.
Products of zeroes of cubic polynomial,
⇒ αβγ = -d/a.
⇒ 1/αβ + 1/βγ + 1/γα.
⇒ (βγ)(γα) + (αβ)(γα) + (αβ)(βγ)/(αβ)(βγ)(γα).
⇒ (αβγ²) + (βγα²) + (αγβ²)/(α²β²γ²).
⇒ αβγ[γ + α + β]/(αβγ)².
⇒ [α + β + γ]/(αβγ).
⇒ -b/a/-d/a
⇒ -b/a X a/-d.
⇒ b/d.
MORE INFORMATION.
Nature of the factors of the quadratic expression.
(1) = Real and different, if b² - 4ac > 0.
(2) = Rational and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Now, Consider
☆ On taking LCM, we get
─━─━─━─━─━─━─━─━─━─━─━─━─