Math, asked by mittalsoni5689, 4 months ago

α,β and ¥ are roots of cubic polynomial ax^3+bx^2+cx+d then 1/αβ+1/β¥+1/¥α​

Answers

Answered by amansharma264
3

EXPLANATION.

α,β,γ are the roots of the polynomial,

⇒ F(x) = ax³ + bx² + cx + d.

As we know that,

Sum of zeroes of the cubic equation,

⇒ α + β + γ = -b/a.

Products of zeroes of cubic polynomial two at a time,

⇒ αβ + βγ + γα = c/a.

Products of zeroes of cubic polynomial,

⇒ αβγ = -d/a.

⇒ 1/αβ + 1/βγ + 1/γα.

⇒ (βγ)(γα) + (αβ)(γα) + (αβ)(βγ)/(αβ)(βγ)(γα).

⇒ (αβγ²) + (βγα²) + (αγβ²)/(α²β²γ²).

⇒ αβγ[γ + α + β]/(αβγ)².

⇒ [α + β + γ]/(αβγ).

⇒ -b/a/-d/a

⇒ -b/a X a/-d.

⇒ b/d.

                                                                                                                                       

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by mathdude500
0

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge {AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼Since,  \:  \alpha ,  \beta ,  \gamma  \: are \: the \: roots \: of \: the

\sf \:  polynomial \: f(x) =  {ax}^{3}  +  {bx}^{2}  + cx + d,  \: then

\begin{gathered}\begin{gathered}\bf  \begin{cases} &amp;\sf{ \alpha +   \beta  +  \gamma =  - \dfrac{b}{a}  } \\ &amp;\sf{ \alpha  \beta  \gamma =  - \dfrac{d}{a}  } \end{cases}\end{gathered}\end{gathered}

☆ Now, Consider

\sf \:  ⟼ \: \dfrac{1}{ \alpha  \beta }  + \dfrac{1}{ \beta  \gamma }  + \dfrac{1}{ \gamma  \alpha }

☆ On taking LCM, we get

\sf \:  ⟼ = \dfrac{ \ \gamma   + \alpha  +  \beta }{ \alpha  \beta  \gamma }

\sf \:  ⟼ \:  =  \: \dfrac{ \alpha  +  \beta +   \gamma }{ \alpha  \beta  \gamma }

\sf \:  ⟼ \:  = \dfrac{ - \dfrac{b}{a} }{ - \dfrac{d}{a} }

\sf \:  ⟼ \:  = \dfrac{b}{d}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions