Α and β are zeroes of the quadratic polynomial x2 – 6x + y. find the value of ‘y’ if 3α + 2β = 20.
Answers
Step-by-step explanation:
Given -
- p(x) = x² - 6x + y
- 3α + 2β = 20
To Find -
- Value of y
Now,
As we know that :-
- α + β = -b/a
→ α + β = -(-6)/1
→ α + β = 6
And
- αβ = c/a
→ αβ = y/1
→ αβ = y
Now,
3α + 2β = 20 can be written as :-
→ (3 + 2)(α + β) - 3β - 2α = 20
→ (3 + 2)(6) - 3β - 2α = 20
→ 5×6 - 20 = 3β + 2α
→ 30 - 20 = 3β + 2α
→ 3β + 2α = 10
Now,
→ [ 3α + 2β = 20 ] × 2
[ 2α + 3β = 10 ] × 3
→ 6α + 4β = 40
6α + 9β = 30
(-) (-) (-)
___________
→ -5β = 10
→ β = -2
Now,
→ 3α + 2β = 20
→ 3α = 20 - 2(-2)
→ 3α = 20 + 4
→ 3α = 24
→ α = 8
Henec,
The value of α is 8 and β is -2.
Now,
The value of y is
→ αβ = y
→ 8 × -2 = y
→ y = -16
Hence,
The value of y is -16.
Answer:
Step-by-step explanation:
Given :
α , β are zeroes of the quadratic polynomial x² - 6x + y &
3α + 2β = 20 ... (1)
To Find :
Value of y
Solution :
Compare given polynomial x²-6x+y with ax²+bx+c , we get ,
⇒ a = 1 , b = -6 , c = y
Now ,
Sum of zeroes , α + β = -b/a = -(-6)/1
⇒ α + β = 6
⇒ 2α + 2β = 12 ... (2) [ Multiply 2 on both sides ]
Product of zeroes , αβ = c/a = y/1
⇒ αβ = y ... (3)
Now solve (2) - (1) , we get ,
⇒ 2α + 2β - 3α - 2β = 12 - 20
⇒ -α = -8
⇒ α = 8
sub. α value in (1) , we get ,
⇒ 2β = 20 - 3(8)
⇒ 2β = -4
⇒ β = -2
Now , sub. α , β values in (3) , we get ,
⇒ αβ = y
⇒ 8(-2) = y
⇒ y = -16
#SPJ2