Physics, asked by jiyak966, 1 year ago

Angle between two vectors of magnitudes 12 and 18 units when their resultant is 24 units is

Answers

Answered by Rosedowson
99
Hi..

R² = A² + B² + 2ABcos(θ)
24² = 12² + 18² + 2*12*18cos(θ)

We can do all the arithmetic or spot that 6² cancels out, giving:
4² = 2² + 3² + 2*2*3cos(θ)
16 = 13 + 12cos(θ)
cos(θ) = 3/12 = 0.25
θ = cos⁻¹0.25 = 75.5º..

Hope this helps u!!

Rosedowson: Pls mark d brainliest!
Answered by VaibhavSR
0

Answer:

75°52'

Explanation:

Given:

Magnitude of first vector(\vec{A})=12

Magnitude of second vector(\vec{B})=18

and resultant of the given vectors (\vec{R})=24.

Find

Resultant vector

Solution

Magnitude of first vector(\vec{A})=12

Magnitude of second vector (\vec{B})=18

and resultant of the given vectors (\vec{R})=24

We know that resultant vector

|\vec{R}|=24=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}=\sqrt{(12)^{2}+(18)^{2}+2 \times 12 \times 18 \cos }

or (24)^{2}=144+324+432 \cos \theta

\Rightarrow 432 \cos \theta=108

\Rightarrow \cos \theta=\frac{108}{432}=0 \times 25

or \theta=\cos ^{-1} 0 \times 25=75^{\circ} 52^{\prime}

#SPJ2

Similar questions