Physics, asked by rachit376629, 1 year ago

angular momentum of projectile.about point of projection when it strikes the ground is​

Answers

Answered by nirman95
1

To find:

Angular momentum of projectile when it strikes the ground with reference to the point of projection.

Calculation:

At a time t ; velocity will be:

1) \: v_{x} = u \cos( \theta)  \\2) \:  v_{y} = u \sin( \theta)  - gt

At time t , position vector will be ;

1) \: x = u \cos( \theta) t \\ 2) \: y = u \sin( \theta) t -  \dfrac{1}{2} g {t}^{2}

So, angular momentum at time t ;

  \therefore \: \vec{L} = m( \vec{r}  \times  \vec{v})

  =  > \: \vec{L} = m \bigg \{( x \hat{i} + y \hat{j}) \times ( v_{x} \hat{i} +  v_{y} \hat{j}) \bigg \}

  =  > \: \vec{L} = \dfrac{1}{2} mug \cos( \theta)  {t}^{2}  \:  \: ( -  \hat{k})

So putting value of t ;

  =  > \: \vec{L} = \dfrac{1}{2} mug \cos( \theta)  {( \dfrac{2u \sin( \theta) }{g}) }^{2}  \:  \: ( -  \hat{k})

  =  > \: \vec{L} =  \dfrac{2 m {u}^{3}}{g} \cos( \theta)  { \sin}^{2} ( \theta) \:  \: ( -  \hat{k})

So, final answer is:

 \boxed{ \sf{ \green{ \: \vec{L} =  \dfrac{2 m {u}^{3}}{g} \cos( \theta)  { \sin}^{2} ( \theta) \:  \: ( -  \hat{k})}}}

Similar questions