Another question.......
Attachments:
Answers
Answered by
1
=(1+tan²A) +(1+(1/tan²A))
[USING sec²A=1+tan²A]
=sec²A+(1+cot²A)
[USING cosec²=1+cot²A]
=sec²A+cosec²A
=(1/cos²A) +(1/sin²A)
=(sin²A+cos²A)/sin²Acos²A
[USING sin²A+cos²A=1]
=1/[sin²A(1-sin²A)]
=1/(sin²A-sin^4A]
So option A is the right answer.
[USING sec²A=1+tan²A]
=sec²A+(1+cot²A)
[USING cosec²=1+cot²A]
=sec²A+cosec²A
=(1/cos²A) +(1/sin²A)
=(sin²A+cos²A)/sin²Acos²A
[USING sin²A+cos²A=1]
=1/[sin²A(1-sin²A)]
=1/(sin²A-sin^4A]
So option A is the right answer.
Similar questions