Math, asked by lahariyadav5973, 1 year ago

Ans for if alpha and beta are the zeros of the polynomial x2+4x+3 from the polynomial whose zeros are 1+beta/alpha and 1+alpha/beta

Answers

Answered by QGP
2
Hey there!

The answer is in the image.

Hope it helps,
Purva
Brainly Community
Attachments:
Answered by Anonymous
132

 \sf \:  {x}^{2}  + 4x + 30


 \sf \:  {x}^{2}  + x + 3x - 3 = 0


 \sf \: x(x + 1) + 3(x + 1) = 0


 \sf \: (x + 1)(x + 3) = 0


 \underline{ \boxed{ \sf x =  - 1, - 3}}


 \sf \: 1 +  \frac{ \beta}{ \alpha}  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: 1 +  \frac{ \alpha}{ \beta}


 \sf \alpha =  - 1


 \sf \beta =  - 3


 \sf \: 1  +  \frac{ \cancel - 3}{ \cancel - 1}


 \color{red} \sf \:  = 4


 \sf \: 1 +  \frac{ - 1}{ - 3}


 \sf \: 1 +  \frac{1}{3}  =  \boxed{ \color{red} \frac{4}{3} }


 \sf \: a,b


 \sf \:  {x}^{2}  - (sum \: of \: roots)x + product = 0


 \sf \:  {x}^{2}  -  \bigg( \frac{16}{3} \bigg) x +  \frac{16}{3}  = 0


 \color{blue}  \sf \: {3x}^{2}  - 16x + 16 = 0
Similar questions