Math, asked by misty2356, 9 months ago

ans it for 50 points spam will be reported​

Attachments:

Answers

Answered by SillySam
5

Question :

  • Factorise : x² + 6x + 10 = 0

Solution :

  • x² + 6x + 10 = 0

In the above equation

  • a ( coefficient of x²) = 1
  • b ( coefficient of x) = 6
  • c ( constant term) = 10

Now , find the discriminant of the equation :

  • Discriminant = b² - 4ac

= 6² - 4 × 1 × 10

= 36 - 40

= -4

Now , using the quadratic formula to find the root of the equation .

  • The quadratic formula is given by :

 \boxed{ \implies\tt x =  \frac{  - b \pm \sqrt{discriminant } }{2a}}

 \tt x =  \dfrac{ - 6  +  \sqrt{ - 4} }{2 \times 1}  \qquad \: x =   \dfrac{ -  6 -  \sqrt{ - 4} }{2 \times 1}

 \tt x =  \dfrac{ - 6 + 2i}{2}  \qquad x =  \dfrac{ - 6 - 2i}{2}

  • where i = - 1

  \tt  x =  \dfrac{ -6 + 2 \times -1}{2}  \qquad x =   \dfrac{ - 6 - 2 \times -1}{2}

 \tt x = \dfrac{-6 - 2}{2} \qquad x = \dfrac{-6 + 2}{2}

\tt x = \dfrac{-8}{2} \qquad x = \dfrac{ -4}{2}

\tt x = -4 \qquad x = -2

Answered by BRAINLYADDICTOR
24

★FIND:

The value of 'x'

★GIVEN,

\bold{x^2+6x+10=0}

★SOLUTION:

\bold{x^2+6x+10=0}

\bold{where, }

\bold{a=1,} \bold{b=6,} \bold{c=10}

x =  \frac{ - b +  -  \sqrt{b {}^{2}  - 4ac}  }{2a}

x =  \frac{ - 6 +  -  \sqrt{36 - 4(1)(10)} }{2(1)}  \\  =  \frac{ - 6 +  -  \sqrt{36 - 40} }{2}  \\  =   \frac{ - 6 +  -  \sqrt{ - 4} }{2}  \\  =  \frac{ - 6 +  -  \sqrt{4i {}^{2} } }{2}   \\ (i {}^{2} =  - 1)  \\  =  \frac{ - 6 +  -  \sqrt{4}i }{2}  \\  =  \frac{ - 6 +  - 2i}{2}  \\  =  - 3 +  - i \\ x =  - 3 +  - i

Similar questions