Math, asked by aagamj8, 4 months ago

Ans the sum step by step in photo

Attachments:

aagamj8: Thanks for answering

Answers

Answered by sainiinswag
1

Answer:

.

The \: answer \: is \: =  \sqrt{3}  +  \frac{1}{ \sqrt{5} }

Step-by-step explanation:

Given:-

  •  \frac{14}{5 \sqrt{3} -  \sqrt{5}  }

To Find:-

  • Rationalize the Denominator!

{{{ \color{magenta}{ \mathfrak{ ★solution :}}}}}

 \frac{14}{5 \sqrt{3}  -  \sqrt{5} }  \\  \\ Rationalize \: the \: denominator \\  \\  =   > \frac{14}{5 \sqrt{3}  -  \sqrt{5} } \times  \frac{{5 \sqrt{3}   +   \sqrt{5} }}{{5 \sqrt{3}   +  \sqrt{5} }}  \\  \\  =  >   \frac{14(5 \sqrt{3}  +  \sqrt{5} )}{ [ {(5 \sqrt{3}) }^{2}  -  {( \sqrt{5} )}^{2}  ] }  \\  \\  =  >  \frac{14( 5\sqrt{3} +  \sqrt{5} ) }{25 \times 3 - 5}  \\  \\  =  >   \frac{14 (5\sqrt{3} + \sqrt{5} ) }{75 - 5}  \\  \\  = >  \frac{14(5 \sqrt{3}  +  \sqrt{5} )}{70}  \\  \\  =  > Cut \: 70 \: with \: 14 \: \:  \:  we \:  have \\  \\  =  > \frac{5 \sqrt{3}  +  \sqrt{5} }{5}  \\  \\  =  >  \frac{5 \sqrt{3} }{5}  +  \frac{ \sqrt{5} }{5}  \\  \\  =  >  \sqrt{3}  +  \frac{ \sqrt{5} }{ {( \sqrt{5} )}^{2} }  \\  \\  =  >  \sqrt{3}  +  \frac{1}{ \sqrt{5} }

.

.

\huge\boxed{\fcolorbox{black}{pink}{♛Give.Feedback♛}}


aagamj8: Thanks
aagamj8: Can you help me more
sainiinswag: Welcome
sainiinswag: yes!
aagamj8: There is another question on my account which I am unable to solve
sainiinswag: ok i see
Similar questions