ans this question 5 star
Answers
Answer:
Step-by-step explanation:
✵Given:-
Sides of an Equilateral Triangle are (2a-b+5), (a+b) and (2b-a+2).
✵To Find:-
Area of the Equilateral Triangle.
✵We Know That:-
All sides of an Equilateral Triangle are Equal.
∴(2a-b+5)=(a+b)=(2b-a+2)
✵Formula Applied:-
- Area of Equilateral=
✵Solution:-
→(2a-b+5)=(a+b)=(2b-a+2)
⇒(2a-b+5)=a+b
⇒2a-a-b-b+5=0
⇒a-2b+5=0
⇒a=2b-5 ---------(1)
(2b-a+2)=a+b --------------(2)
Put equation(1) in equation(2):-
⇒[2b-(2b-5)+2]=2b-5+b
⇒2b-2b+5+2=3b-5
⇒3b-5=7
⇒3b=7+5=12
⇒b=
⇒b=4
2a-b+5=a+b
Put value of b=4,
⇒2a-4+5=a+4
⇒2a-a=4-1
⇒a=3
Now, we know that side of Equilateral Triangle=a+b
⇒Side of Equilateral Triangle=a+b, where a=3 and b=4.
⇒Side of Equilateral Triangle=3+4
⇒Side of Equilateral Triangle=7 units.
Area of Equilateral Triangle=, where side=7 units.
Area of Equilateral Triangle=
___________________
____________________________________