Math, asked by sswatipriya95, 2 months ago

ans this question solve it​

Attachments:

Answers

Answered by Anonymous
29

 \\  \large{ \underline{ \underline{ \bigstar \:  \:  \:  \:  \: { \pmb{ \sf{Solution \:  : }}}}}} \\

 \sf \: f(x) = \begin{cases} \sf \frac{2x -  |x| }{x},  & \sf \:  \:  \:  \: x \not = 0 \\  \\  \\ \:  \:  \:  \:  \sf 2 \:  \:  \:  \:  ,&  \sf\:  \:  \:  \: x = 0 \end{cases}

Function exist at x = 0 if

 \dashrightarrow \sf f( {0}^{ + } ) = f( {0}^{ - } ) = f(0)

 \begin{array}{c|c| c}  \dashrightarrow \sf \lim_{x \to  {0}^{ + } } f(x)& \sf \dashrightarrow \lim_{x \to  {0}^{  -  } } f(x)& \dashrightarrow \sf \: f(x)| _{x=0} = 2 \\  \\  \dashrightarrow  \sf\lim_{x \to  {0}^{ + }} \bigg( \frac{2x -  |x| }{x} \bigg) & \dashrightarrow\sf\lim_{x \to  {0}^{  - }} \bigg( \frac{2x -  |x| }{x} \bigg)&\sf \dashrightarrow f(x)| _{x=0} = 2 \\  \\  \dashrightarrow  \sf\lim_{x \to  {0}^{ + } } \bigg(2 -  \frac{ |x| }{x}  \bigg)& \dashrightarrow \sf\lim_{x \to  {0}^{  -  } } \bigg(2 -  \frac{ |x| }{x}  \bigg)& \dashrightarrow\sf \: f(x)| _{x=0} = 2 \\  \\  \dashrightarrow\sf\lim_{x \to  {0}^{ + } } \bigg(2 -  \frac{ {x}^{  } }{ {x}^{ } } \bigg)& \dashrightarrow\sf\lim_{x \to  {0}^{  -  } } \bigg(2  +  \frac{x}{x}  \bigg) & \sf \dashrightarrow \: f(x)| _{x=0} = 2 \\  \\  \dashrightarrow\sf\lim_{x \to  {0}^{ + } } \bigg(2   - 1 \bigg)& \dashrightarrow\sf\lim_{x \to  {0}^{  -  } } \bigg(2    + 1 \bigg)& \sf \dashrightarrow \: f(x)| _{x=0} = 2 \\  \\  \dashrightarrow \sf \: 1& \dashrightarrow \sf  3& \dashrightarrow \sf2\end{array} \\  \\  \\  \bf \therefore \:  \:  \:  Limit  \:  \: doesn't  \:  \: exist \:  \:  at  \:  \: x= 0

Similar questions