Math, asked by pinkibhattacharjee22, 7 months ago

Anshu covers a distance of 200km traveling with a uniform speed of x km per hour.The distance could have been covered 2hours less,had the speed been(x+5)km per hour .Calculate the value of x.

Answers

Answered by EliteZeal
65

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Total distance = 200 km

 \:\:

  • Original speed = x km/hour

 \:\:

  • Time taken will be 2 hours less, if the speed is (x+5) km/hour

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

Case I [ Speed = x ]

 \:\:

  • Let the time taken be t1

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf Time = \dfrac { Distance  } { Speed } ---- (1)

 \:\:

  • Time = t1

  • Distance = 200 km

  • Speed = x

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf t1 = \dfrac { 200} { x} ------ (2)

 \:\:

Case II [ Speed = x +5 ]

 \:\:

  • Let the time taken be t2

 \:\:

  • Time = t2

  • Distance = 200 km

  • Speed = x + 5

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf t2 = \dfrac { 200} { x + 5} ------ (3)

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Time taken will be 2 hours less, if the speed is (x+5) km/hour

 \:\:

➠ t1 = t2 + 2

 \:\:

 \sf \dfrac { 200} { x} = \dfrac { 200} { x + 5} + 2

 \:\:

 \sf \dfrac { 200} { x} = \dfrac { 200 + 2x + 10} { x + 5}

 \:\:

Cross multiplying

 \:\:

➜ 200x + 1000 = 200x + 2x² + 10x

 \:\:

➜ 2x² + 10x - 1000 = 0

 \:\:

Dividing the above equation by "2"

 \:\:

➜ x² + 5x - 500 = 0

 \:\:

➜ x² + 25x - 20x - 500 = 0

 \:\:

➜ x(x + 25) -20(x + 25) = 0

 \:\:

➜ (x + 25)(x - 20) = 0

 \:\:

  • x = -25

  • x = 20

 \:\:

As speed can't be negative hence x = 20

 \:\:

  • Hence the original speed is 20 km/hr
Answered by Ranveerx107
2

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Total distance = 200 km

 \:\:

  • Original speed = x km/hour

 \:\:

  • Time taken will be 2 hours less, if the speed is (x+5) km/hour

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

Case I [ Speed = x ]

 \:\:

Let the time taken be t1

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf Time = \dfrac { Distance  } { Speed } ---- (1)

 \:\:

Time = t1

Distance = 200 km

Speed = x

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf t1 = \dfrac { 200} { x} ------ (2)

 \:\:

Case II [ Speed = x +5 ]

 \:\:

Let the time taken be t2

 \:\:

Time = t2

Distance = 200 km

Speed = x + 5

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf t2 = \dfrac { 200} { x + 5} ------ (3)

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Time taken will be 2 hours less, if the speed is (x+5) km/hour

 \:\:

➠ t1 = t2 + 2

 \:\:

 \sf \dfrac { 200} { x} = \dfrac { 200} { x + 5} + 2

 \:\:

 \sf \dfrac { 200} { x} = \dfrac { 200 + 2x + 10} { x + 5}

 \:\:

Cross multiplying

 \:\:

➜ 200x + 1000 = 200x + 2x² + 10x

 \:\:

➜ 2x² + 10x - 1000 = 0

 \:\:

Dividing the above equation by "2"

 \:\:

➜ x² + 5x - 500 = 0

 \:\:

➜ x² + 25x - 20x - 500 = 0

 \:\:

➜ x(x + 25) -20(x + 25) = 0

 \:\:

➜ (x + 25)(x - 20) = 0

 \:\:

x = -25

x = 20

 \:\:

  • As speed can't be negative hence x = 20

 \:\:

  • Hence the original speed is 20 km/hr
Similar questions