Math, asked by Udayeswari, 11 months ago

Answer Answer !!!!!​

Attachments:

Answers

Answered by mushkankumari2109200
1

Answer:

Step-by-step explanation:

Work 1:

Given, x = a cos theta and y = b sin theta. Substituting for x and y ,

b²x² + a²y² - a²b² = b²a² cos² theta + a²b² sin² theta - a²b²

= a²b² (cos² theta + sin² theta) - a²b²

= a²b² . 1 - a²b² (Using the trigonometric identity cos² theta + sin² theta = 1)

= a²b² - a²b² = 0 (Proved)

Work 2:

x = a cos theta , y = b sin theta . Substituting for x,

b²x² + a²y² - a²b² = b²a² cos² theta - a²b² + a²y²

= b²a²(cos² theta-1) + a²y²

= b²a²(-sin² theta) + a²y² = -a²(b²sin² theta) + a²y² Substitute y for b sin theta.

=-a²y² + a²y²

= 0 (Proved)

Answered by Anonymous
1

Given that :

x = a  \cos \alpha  \: and \: y = b \sin\alpha

Then,

 {b}^{2}  {x}^{2}  +  {a}^{2}  {y}^{2}  \\  \\  =  >  {b}^{2}  {a}^{2}  { \cos }^{2}  \alpha  +  {a}^{2}  {b}^{2}  { \sin}^{2}  \alpha   \\  \\  =  >  {a}^{2}  {b}^{2} ( { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha ) \\  \\  =  >  {a}^{2}  {b}^{2}  \times 1 \\  \\  =  >  {a}^{2}  {b}^{2}

So, Option (b) is correct ✔️✔️

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and....

Fóllòw ☺️☺️

Similar questions