Math, asked by rashrachana25, 8 months ago

answer as fast as u can

Attachments:

Answers

Answered by abhi569
4

Step-by-step explanation:

Let sinA = a, cosA = b.

⇒ (a + b)/(a - b) + (a - b)/(a + b)

⇒ {(a + b)² + (a - b)²}/(a + b)(a - b)

     (a + b)² + (a - b)² = 2(a² + b²)

     (a + b)(a - b) = a² - b²

⇒ 2(a² + b²)/(a² - b²)

⇒ 2(sin²A + cos²A)/(a²-b²)

⇒ 2(1)/(sin²A - cos²A)

⇒ 2/(sin²A - cos²A)        proved

       Substitute sin²A = 1 - cos²A  & -cos²A = sin²A-1;

⇒ 2/(1-cos²A-cos²A) = 2/(1-2cos²A)

 Or,

⇒ 2/(sin²A+sin²A-1) = 2/(2sin²A - 1)

 Proved

Similar questions