Math, asked by prabhas24480, 2 months ago

Answer as soon as possible...


Note : This only for moderators ...​

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\bold{Solution-}}

 \tt \:   \sqrt[3]{2 - x} +  \sqrt{x - 1}  = 1 -  -  - (1)

To solve this question, we use method of Substitution,

\tt \: Put \:  \sqrt{x - 1}  = y

On squaring both sides, we get

\tt \: x - 1 =  {y}^{2}

 \therefore \: \tt \: x \:  =  \:  {y}^{2}  + 1

Substituting these values in equation (1),

\tt \:  \sqrt[ 3]{2 - ( {y}^{2}  - 1)}  + y = 1

\tt \:  \sqrt[3]{2 -  {y}^{2}  - 1}  = 1 - y

\tt \:  \sqrt[3 ]{1 -  {y}^{2} }  = 1 - y

On Cubing both sides, we get

\tt \: 1 -  {y}^{2}  =  {(1 - y)}^{3}

\tt \: (1 - y)(1 + y) -  {(1  -  y)}^{3}  = 0

\tt \: (1 - y)\bigg((1 + y) -  {(1 - y)}^{2}  \bigg)  = 0

\tt \: (1 - y)(1 + y - 1 -  {y}^{2}   + 2y) = 0

\tt \: (1 - y)(3y -  {y}^{2} ) = 0

\tt \: (1 - y)y(3 - y) = 0

 \therefore \:  \: \tt \: y = 0 \:  \: or \:  \:  \: 1 \: \:  \:  or \:  \:  \: 3

Hence,

Correspondence values of x are

\begin{gathered}\boxed{\begin{array}{c|c} \bf y & \bf x =  {y}^{2}  + 1 \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 2 \\ \\ \sf 3 & \sf 10 \end{array}} \\ \end{gathered}

Answered by thebrain2312
3

Answer:

hope it helps

Step-by-step explanation:

thanks you

Attachments:
Similar questions