Math, asked by Anonymous, 8 months ago

Answer asap ill mark brainliest

Attachments:

Answers

Answered by rohitkhajuria90
0

Please refer the attached image for fig.

Answer

secA \:  cosecC +cosecA \:  secC \\  = 2 \times 2 +  \frac{2}{ \sqrt{3} }  \times  \frac{2}{ \sqrt{3} }  \\  = 4 +  \frac{4}{3}  \\  =  \frac{12 + 4}{3}  =  \\  =  \frac{16}{3}

Steps and explanation

 \sin\theta =  \frac{opp}{hyp}  \\ cos\theta =  \frac{adj}{hyp}  \\ tan\theta =  \frac{opp}{adj}

\theta = A(i.e. \: angleA)

We have

cotA =  \frac{1}{ \sqrt{3} }

As

tanA =  \frac{1}{cotA}

So,

tanA =  \sqrt{3}  \\ opp =  \sqrt{3}  \: and \: adj = 1

BY Pythagoras theorem

 {hyp}^{2}  =  {opp}^{2}  +  {adj}^{2}   \\  {hyp}^{2}  =  { (\sqrt{3} )}^{2}  +  {1}^{2} \\ hyp =  \sqrt{3 + 1}  =  \sqrt{4}  = 2

So

sinA =  \frac{ \sqrt{3} }{2}  \\ inverse \: of \: sin \: is \: cosec \\  =  >cosecA  =  \frac{2}{ \sqrt{3} } \\ cosA =  \frac{1}{2}  \\ similarly \\ cosA =  \frac{1}{secA}  \\ secA = 2

Similarly we can find

cosecC = 2 \\ and \\ secC =  \frac{2}{ \sqrt{3} }

Similar questions