Answer (c)
Please answer this asap!
Attachments:
Answers
Answered by
1
In a cyclic quadrilateral we have , sum of opposite angles is 180.
so, ∠ABC + ∠ADC =180°
⇒ 93° + ∠ADC = 180° (∠ABC=93° GIVEN)
⇒∠ADC = 180°-93°
⇒∠ADC = 87°
∠ACE = 90° (Tangents at any point on the circle is perpendicular to the radius of the circle at the point of contact)
So, ∠ACE=∠ACD+∠DCE
⇒ 90° = ∠ACD + 35° (∠DCE = 35° GIVEN)
⇒90°- 35° = ∠ACD
⇒ 55° = ∠ACD
Now, in triangle Δ ADC , we have ,
∠CAD + ∠ADC + ∠ACD = 180° (Angle Sum Property of a triangle ).
∠CAD + 87° + 55° = 180°
∠CAD = 180° -(87°+55°)
∠CAD = 180°- 142°
∠CAD = 38°
∴ ∠ADC = 87°
∠CAD = 38°
∠ACD = 55°
so, ∠ABC + ∠ADC =180°
⇒ 93° + ∠ADC = 180° (∠ABC=93° GIVEN)
⇒∠ADC = 180°-93°
⇒∠ADC = 87°
∠ACE = 90° (Tangents at any point on the circle is perpendicular to the radius of the circle at the point of contact)
So, ∠ACE=∠ACD+∠DCE
⇒ 90° = ∠ACD + 35° (∠DCE = 35° GIVEN)
⇒90°- 35° = ∠ACD
⇒ 55° = ∠ACD
Now, in triangle Δ ADC , we have ,
∠CAD + ∠ADC + ∠ACD = 180° (Angle Sum Property of a triangle ).
∠CAD + 87° + 55° = 180°
∠CAD = 180° -(87°+55°)
∠CAD = 180°- 142°
∠CAD = 38°
∴ ∠ADC = 87°
∠CAD = 38°
∠ACD = 55°
Similar questions