Math, asked by Anonymous, 10 months ago

answer. class test is s there

in 2 mins ​

Attachments:

Answers

Answered by Anonymous
20

Answer:

\huge\bold{\underline{\underline{{Answer:-}}}}

 \sqrt[3]{512 \times  343}

resolving \:512 \: and \: 343\: into \: prime \: factors

512 = 2 \times 2 \times 2 \times 2 \times 2 \times 2  \times 2 \times 2 \times 2

343 = 7 \times 7 \times 7

 \sqrt[3]{512}  = 2 \times 2 \times 2 = 8

 \sqrt[3]{343}  = 7

hence \:  \:  \:  \:  \:  \sqrt[3]{512 \times 343}

 \sqrt[3]{8 \times 7}

 \sqrt[3]{56}

= 56

Answered by hearthacker54
15

Answer:

Answer:

\huge\bold{\underline{\underline{{Answer:-}}}}Answer:−

\sqrt[3]{512 \times 343}3512×343

resolving \:512 \: and \: 343\: into \: prime \: factorsresolving512and343intoprimefactors

512 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2512=2×2×2×2×2×2×2×2×2

343 = 7 \times 7 \times 7343=7×7×7

\sqrt[3]{512} = 2 \times 2 \times 2 = 83512=2×2×2=8

\sqrt[3]{343} = 73343=7

hence \: \: \: \: \: \sqrt[3]{512 \times 343}hence3512×343

\sqrt[3]{8 \times 7}38×7

\sqrt[3]{56}356

= 56

Similar questions