Physics, asked by sujalpatel313131, 9 months ago

Answer correctly or i'll report u

Attachments:

Answers

Answered by Mysterioushine
14

\huge\bold{\underline{\underline{Given:-}}}

  • Displacement of a body along a straight line is described by the equation is x = 2t³ + 4t - 10
  • (Here i have mentioned the term as displacement because the body is moving along strainght line which is nothing but the shortest path of the motion)

\huge\bold{\underline{\underline{To\:Find:-}}}

  • Velocity and acceleration of the body at t = 4 sec

\huge\bold{\underline{\underline{Solution:-}}}

We know that ,

  \huge\bold \star \: \purple { \bold{ \boxed{ v \:  =  \:  \frac{dx}{dt}  }}}

Where ,

  • V is velocity
  • x is displacement
  • t is time

  \implies \: v \:  =  \:  \frac{d}{dt} (2t {}^{3}  + 4t - 10) \\  \\  \implies \: v =  \frac{d}{dt} (2t {}^{3} ) +  \frac{d}{dt} (4t) -  \frac{d}{dt} (10)

 \bold {\boxed{ \frac{d}{dx} (a {}^{n}) \:  =  \: n.x {}^{n - 1} }}

 \implies \: v \:  =   \frac{d}{dt} (2.3 {t}^{3 - 1} ) + 4 \frac{d}{dt} (1.t^{1-1}) -  \frac{d}{dt} (10)

 \bold{ \boxed{ \frac{d}{dt} (constant) \:  =  \: 0}}

 \implies \: v \:  =  \: 6 {t}^{2}  + 4- 0 \\  \\  \implies \:     \pink {\underline{\bold {\boxed {v \:  = 6 {t}^{2} +4}}}}

We have ,

 \huge\bold \star \:  \purple {\bold{ \boxed{ a =  \frac{dv}{dt} }}}

Where ,

  • a is Acceleration
  • v is Velocity
  • t is time

 \implies \: a =  \frac{d}{dt} (6t {}^{2}+4) \\  \\   \implies a =  \frac{d}{dt} (6.2 {t}^{2 - 1})+\frac{d}{dt}(4)  \\  \\  \implies  \pink{ \underline{\bold {\boxed { a \:  =  12t}}}}

At t = 4 sec ,

v = 6(4) {}^{2}  +4= 6(16)+4 = 96 +4 = 100\: ms { }^{ - 1}  \\  \\ a = 12(4) = 48 \: ms {}^{ - 2}

∴ The velocity and acceleration of the body at t = 4 sec , are 100 m/s and 48 m/s²

Answered by abdulrubfaheemi
0

Answer:

\huge\bold{\underline{\underline{Given:-}}}

Given:−

Displacement of a body along a straight line is described by the equation is x = 2t³ + 4t - 10

(Here i have mentioned the term as displacement because the body is moving along strainght line which is nothing but the shortest path of the motion)

\huge\bold{\underline{\underline{To\:Find:-}}}

ToFind:−

Velocity and acceleration of the body at t = 4 sec

\huge\bold{\underline{\underline{Solution:-}}}

Solution:−

We know that ,

\huge\bold \star \: \purple { \bold{ \boxed{ v \: = \: \frac{dx}{dt} }}}⋆

v=

dt

dx

Where ,

V is velocity

x is displacement

t is time

\begin{gathered} \implies \: v \: = \: \frac{d}{dt} (2t {}^{3} + 4t - 10) \\ \\ \implies \: v = \frac{d}{dt} (2t {}^{3} ) + \frac{d}{dt} (4t) - \frac{d}{dt} (10) \end{gathered}

⟹v=

dt

d

(2t

3

+4t−10)

⟹v=

dt

d

(2t

3

)+

dt

d

(4t)−

dt

d

(10)

\bold {\boxed{ \frac{d}{dx} (a {}^{n}) \: = \: n.x {}^{n - 1} }}

dx

d

(a

n

)=n.x

n−1

\implies \: v \: = \frac{d}{dt} (2.3 {t}^{3 - 1} ) + 4 \frac{d}{dt} (1.t^{1-1}) - \frac{d}{dt} (10)⟹v=

dt

d

(2.3t

3−1

)+4

dt

d

(1.t

1−1

)−

dt

d

(10)

\bold{ \boxed{ \frac{d}{dt} (constant) \: = \: 0}}

dt

d

(constant)=0

\begin{gathered} \implies \: v \: = \: 6 {t}^{2} + 4- 0 \\ \\ \implies \: \pink {\underline{\bold {\boxed {v \: = 6 {t}^{2} +4}}}} \end{gathered}

⟹v=6t

2

+4−0

v=6t

2

+4

We have ,

\huge\bold \star \: \purple {\bold{ \boxed{ a = \frac{dv}{dt} }}}⋆

a=

dt

dv

Where ,

a is Acceleration

v is Velocity

t is time

\begin{gathered} \implies \: a = \frac{d}{dt} (6t {}^{2}+4) \\ \\ \implies a = \frac{d}{dt} (6.2 {t}^{2 - 1})+\frac{d}{dt}(4) \\ \\ \implies \pink{ \underline{\bold {\boxed { a \: = 12t}}}}\end{gathered}

⟹a=

dt

d

(6t

2

+4)

⟹a=

dt

d

(6.2t

2−1

)+

dt

d

(4)

a=12t

At t = 4 sec ,

\begin{gathered}v = 6(4) {}^{2} +4= 6(16)+4 = 96 +4 = 100\: ms { }^{ - 1} \\ \\ a = 12(4) = 48 \: ms {}^{ - 2} \end{gathered}

v=6(4)

2

+4=6(16)+4=96+4=100ms

−1

a=12(4)=48ms

−2

∴ The velocity and acceleration of the body at t = 4 sec , are 100 m/s and 48 m/s²

Similar questions