Math, asked by jaleel123, 19 days ago

ANSWER CORRECTLY WITHOUT SPAMING​

Attachments:

Answers

Answered by sbyadav1910
2

Answer:

323 is correct answer

hence it help u

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2} \times \dfrac{ \sqrt{5}  - 2 }{ \sqrt{5} - 2 }

We know,

\boxed{ \rm{ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}

So, using this identity, we get

\rm :\longmapsto\:x = \dfrac{ {( \sqrt{5}  - 2)}^{2} }{ {( \sqrt{5} )}^{2} -  {2}^{2}  }

We know,

\boxed{ \rm{  {(x - y)}^{2} =  {x}^{2}  +  {y}^{2}  - 2xy}}

So, using this identity, we get

\rm :\longmapsto\:x = \dfrac{5 + 4 - 2 \times 2 \times  \sqrt{5} }{5 - 4}

\rm :\longmapsto\:x = \dfrac{9 - 4\sqrt{5} }{1}

\bf\implies \:x = 9 - 4 \sqrt{5}  -  - (1)

Consider,

\rm :\longmapsto\:y = \dfrac{ \sqrt{5}  +  2}{ \sqrt{5} - 2}

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{ \sqrt{5}  +  2}{ \sqrt{5} - 2} \times \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2}

\rm :\longmapsto\:y = \dfrac{( \sqrt{5}  +  2)^{2} }{( \sqrt{5}) {}^{2}  - 2 {}^{2} }

We know that,

\boxed{ \rm{  {(x +  y)}^{2} =  {x}^{2}  +  {y}^{2} + 2xy}}

and

\boxed{ \rm{ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}

So, using these Identities, we get

\rm :\longmapsto\:y = \dfrac{5 + 4 + 2 \times 2 \times  \sqrt{5} }{5 - 4}

\rm :\longmapsto\:y = \dfrac{9 + 4\sqrt{5} }{1}

\bf\implies \:y = 9 + 4 \sqrt{5} -  -  - (2)

Now, Consider,

\red{\rm :\longmapsto\: {x}^{2} +  {y}^{2} + xy}

can be rewritten as

\red{\rm  \:  =  \: \: {x}^{2} +  {y}^{2} + xy + xy - xy}

\red{\rm  \:  =  \: \: {x}^{2} +  {y}^{2} +2 xy - xy}

\red{\rm  \:  =  \: \:  {(x + y)}^{2}  - xy}

\rm \:  =  \:  \: (9 - 4 \sqrt{5}  + 9 + 4 \sqrt{5} ) {}^{2}  - (9 - 4 \sqrt{5})(9 + 4 \sqrt{5})

\rm \:  =  \:  \:  {(18)}^{2} +  {9}^{2} -  {(4 \sqrt{5} )}^{2}

\rm \:  =  \:  \: 324 + 81 - 80

\rm \:  =  \:  \: 324 + 1

\rm \:  =  \:  \: 325

Hence,

\red{\bf :\longmapsto\: {x}^{2} +  {y}^{2} + xy = 325}

Similar questions