answer fast if u can i will mark as brainliest promise
Attachments:
Answers
Answered by
7
Answer:
x^2 + y^2 = a^2 + b^2
Step-by-step explanation:
Here,
x = acosθ + bsinθ
Square on both sides:
⇒ x² = ( acosθ + bsinθ )²
⇒ x² = a²cos²θ + b²sin²θ + 2ab.cosθ.sinθ
Similarly,
y = asinθ - bcosθ
Square on both sides:
⇒ y² = ( asinθ - bcosθ )²
⇒ y² = a²sin²θ + b²cos²θ - 2ab.cosθ.sinθ
Adding x² and y²:
⇒ x² + y² = [ a²cos²θ + b²sin²θ + 2ab.cosθ.sinθ ] + [ a²sin²θ + b²cos²θ - 2ab.cosθ.sinθ ]
= a²cos²θ + b²sin²θ + 2ab.cosθ.sinθ + a²sin²θ + b²cos²θ - 2ab.cosθ.sinθ
= a²cos²θ + b²sin²θ + a²sin²θ + b²cos²θ
= a²( cos²θ + sin²θ ) + b²( cos²θ + sin²θ )
= a²( 1 ) + b²( 1 )
= a² + b²
Hence proved.
Answered by
5
Question -
Similar questions