Math, asked by ahabsnejiidmnemwiqiy, 5 months ago

Answer fast please!!!!!
Q. no. 6​

Attachments:

Answers

Answered by khubchandanikhushi12
1

hope this will help u.........

Attachments:
Answered by Anonymous
3

Solution:-

 \rm i) \implies \:  \dfrac{ \sin {}^{2}  \theta }{ \cos \theta}  +  \cos  \theta =  \sec \theta

Now take lcm

 \rm \implies \:  \dfrac{ \sin {}^{2}  \theta + ( \cos \theta ) \cos \theta}{ \cos \theta }

 \rm \implies \:  \dfrac{ \sin {}^{2}  \theta +  \cos {}^{2}  \theta}{ \cos \theta}

We know that

 \rm \implies \:  \sin {}^{2} x +  \cos {}^{2} x = 1

We get

 \rm \implies \:  \dfrac{1}{ \cos \theta}

We know that

 \rm \implies \:  \dfrac{1}{ \cos x}  =  \sec  x

We get

 \rm \implies \:  \dfrac{1}{ \cos \theta}  =  \sec \theta

Hence proved

 \rm \: ii) \implies \:  \cos {}^{2}  \theta(1 +  \tan^{2}  \theta) = 1

We know that

 \rm \implies \tan x =  \dfrac{ \sin x}{ \cos x}

Using this identities

 \rm \implies \cos {}^{2}  \theta \bigg(1 +  \dfrac{ \sin {}^{2} \theta }{ \cos {}^{2}  \theta}  \bigg)

Now Take lcm

 \rm \implies \cos {}^{2}  \theta \bigg( \dfrac{ \cos {}^{2}  \theta +  \sin {}^{2}  \theta}{ \cos {}^{2} \theta }  \bigg)

  \rm \implies \cancel{ \cos {}^{2}  \theta} \bigg( \dfrac{ \cos {}^{2}  \theta +  \sin {}^{2}  \theta}{  \cancel{\cos {}^{2} \theta }}  \bigg)

We get

 \rm \implies \:  \sin {}^{2} \theta +  \cos^{2}  \theta = 1

Hence proved

Similar questions