Math, asked by soeusjn, 8 months ago

ANSWER FOR 45 POINT


determine the point on the curve x^2+y^2=13 where the tangent are perpendicular to the line 3x-2y=0 ​

Answers

Answered by Anonymous
121

\huge\underline\mathbb\red{GIVEN-:}

the \: given \: curve \: is \:  \:x ^{2}  +  {y}^{2}  = 13 .......(1)

 let (x1,y1) be a point on (1)

\huge\underline\mathbb\blue{THEN}

{x}1^{2}  +  {y}^{2} = 13.........(2)

diff.(1) W.R.T X, 2X + 2Y dy/dx =0

⇒ dy/dx = -x/y ⇒ dy/dx(x1 , y1) =-x1/y1.

but \: the \: tangents \: ar e \: perendicular \: to \: 3x - 2y = 0

∴( \frac{ - x1}{y1} )( -  \frac{3}{ - 2}) =  - 1 \:  \:  \:  \:  \:  \:  \: (m1.m2 = 1)

 \frac{3x1}{2y1} ⇒3x1 \:  = 2y1.......(3)

from \: (3) \: y1 =  \frac{3x1}{2} .......(4)

putting (2)

 {x}1^{2}  +  \frac{9x1}{4}  = 13

13 {x}1^{2} \div 4  = 13 \: ⇒ {x}1^{2}  = 4 \: ⇒x1 =    +  - 2

\huge\underline\mathbb\green{WHEN}

x1=2

then from (4), y1 = 3/2 ×2 =3.

\huge\underline\mathbb\pink{WHEN}

x1= -2 , the from (4) y2 = 3/2 ×-2 =-3

∴REQUIRED POINTS ARE (2,3) & (-2,-3)✅

Similar questions