Physics, asked by nandlalsingh4671, 6 months ago

Answer give me please!!!?​

Attachments:

Answers

Answered by Anonymous
87

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ Force \: applied = F}

\:\:\:\:\bullet\:\:\:\sf{ Stretched \: length = x}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{ Potential \: energy \: in \: spring}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

★ Force applied is balanced by spring is constant

\\

\dashrightarrow\:\: \sf{ F = kx ....... (1)}

\\

★ Let \bold{dw} be work done for a small interval of time with \bold{dx} displacement in the spring.

\\

\dashrightarrow\:\: \sf{dw = F \: dx}

\\

☞ Putting value of (1)

\\

 \sf  \dashrightarrow \:\: \int dw  =  \int kx \: dx \\ \\ \\ \sf  \dashrightarrow\:\: \int  \limits_{0}^{w}  dw  = k \int \limits_{0}^{x}  x \: dx \\ \\  \\ \sf  \dashrightarrow\:\:  w = k \bigg( \frac{ {x}^{2} }{2} \bigg)  \\ \\ \\ \sf  \dashrightarrow\:\: w =  \frac{1}{2} k {x}^{2}

\\

★ Work done by spring is \bf{Potential\: energy } conserved in the spring.

\\

\therefore \:\bf{Potential \:\: energy \:\: in \:\: spring \:\: is \:\:  \frac{1}{2}  {kx}^{2} } \\

Similar questions