Math, asked by udtifiru, 5 months ago

answer I will mArk u brainiest I promise​

Attachments:

Answers

Answered by Anonymous
120

\large \bf \pink {៚ \: Question \: ✞}

Find the base of a triangle whose area is \sf 14cm^2 and altitude \sf 4cm.

 \\

\large \bf \pink {៚ \: Solution \: ✞}

Given :-

  • Area of triangle = \sf 14cm^2
  • Altitude / Height = \sf 4cm

We have to find the base of triangle.

Let the unknown base of the triangle be h.

\underline {\boxed {\tt \orange {Area \: of \: a \: triangle \: = \:  \frac{1}{2}  \times Base \times Height}}}

\orange {: \: \leadsto} \: \tt14cm^2=h\times 4cm

\orange {:~\leadsto}~\tt \cfrac{14cm^2}{4cm}=h

\underline {\boxed {\tt \orange {\therefore \: Height \: of \: the \: triangle \: = \:  \cfrac{7}{2}cm} }}

 \\

\large \bf \pink {៚ \: Verification  \: ✞}

Substituting and verifying :-

\orange {:~\leadsto}\:\tt 14cm^2=\cfrac{7}{2}cm\times4cm

\orange {:~\leadsto}~\tt 14cm^2= \cfrac{7}{\cancel2}cm  \times {\cancel4} cm

\orange {:~\leadsto}\:\tt {14cm^2=14cm^2}

\large \underline {\boxed {\tt \orange {Hence, \: verified \: !!}}}

 \\

\large \bf \pink {៚ \:  Know \: more\: ✞}

\orange {:~\leadsto}~\tt Area  \: of \: square=Side\times Side

\orange {:~\leadsto}~\tt Area \: of \: rectangle=Length \times Breadth

\orange {:~\leadsto}~\tt Area \: of \: parallelogram=Base \times Height

 \\

_______________________________________

Note :- Swipe your screen from left to right in order to view the answer completely!

Answered by Sen0rita
23

DIAGRAM :

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf 4}\put(2.8,.3){\large\bf b}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\Theta$}\end{picture}

 \:  \:

S O L U T I O N :

 \:  \:

  • Here, it is given that height of the triangle is 4cm and area of the triangle is 14cm². We've to find the base of the triangle. Let h be the height of the triangle and b be the base of the triangle.

 \:  \:

For finding the area of the triangle, formula is given as :

 \:  \:

\sf:\implies \:  \dfrac{1}{2}  \times b \times h

 \:  \:

Where, b denotes base of the triangle and h denotes height of the triangle.

 \:  \:

 \mathfrak {\underline{substituting \: the \: values \:  :}}

 \:  \:

 \sf : \implies \: Area_{(triangle)}  =  \dfrac{1}{2}  \times b \times h \\  \\  \\  \sf  :\implies \: 14 =  \dfrac{1}{2}  \times b \times 4 \\  \\  \\  \sf  :\implies \:14  =  \frac{4b}{2}  \\  \\  \\  \sf  :\implies \:b =  \frac{14 \times 2}{4}  \\  \\  \\  \sf  :\implies \:b =   \cancel\frac{28}{4}  \\  \\  \\  \sf  :\implies \:\underline{\boxed{\mathfrak\purple{b = 7cm}}} \:  \bigstar

 \:

 \:  \:

\sf\therefore{\underline{Hence, \: the \: base \: of \: the \: triangle \: is \:  \bold{7 \: cm}.}}

Similar questions