answer in full step pls
Answers
Answer:
x = 0 or x = -a
Step-by-step explanation:
(a + x + root(a^2-x^2))/(a + x - root(a^2-x^2)) = b/x
Multiplying both numerator and denominator by (a + x + root(a^2-x^2),
(a + x + root(a^2-x^2))^2/((a + x)^2 - (root(a^2-x^2))^2) = b/x
=((a + x)^2 + a^2 - x^2 +2(a + x)root(a^2 - x^2))/a^2 + x^2 +2ax - a^2 + x^2 = b/x
=(a^2 + x^2 + 2ax + a^2 - x^2 +2(a + x)root(a^2 - x^2))/(2x^2 + 2ax) = b/x
=(a^2 + ax + (a + x)root(a^2 - x^2))/x^2 + ax = b/x
Cross multiplying,
xa^2 + ax^2 + ax*root(a^2 - x^2) + x^2*root(a^2 - x^2) = bx^2 + abx
Bringing all the terms to one side and grouping the common terms,
x^2[a + root(a^2 - x^2) - b] + xa[a + root(a^2 - x^2) - b] = 0
x(x + a)(a + root(a^2 - x^2) - b) = 0
x = 0 or x = -a
Answer:
x = 0 or x = -a
Step-by-step explanation:
(a + x + root(a^2-x^2))/(a + x - root(a^2-x^2)) = b/x
Multiplying both numerator and denominator by (a + x + root(a^2-x^2),
(a + x + root(a^2-x^2))^2/((a + x)^2 - (root(a^2-x^2))^2) = b/x
=((a + x)^2 + a^2 - x^2 +2(a + x)root(a^2 - x^2))/a^2 + x^2 +2ax - a^2 + x^2 = b/x
=(a^2 + x^2 + 2ax + a^2 - x^2 +2(a + x)root(a^2 - x^2))/(2x^2 + 2ax) = b/x
=(a^2 + ax + (a + x)root(a^2 - x^2))/x^2 + ax = b/x
Cross multiplying,
xa^2 + ax^2 + ax*root(a^2 - x^2) + x^2*root(a^2 - x^2) = bx^2 + abx
Bringing all the terms to one side and grouping the common terms,
x^2[a + root(a^2 - x^2) - b] + xa[a + root(a^2 - x^2) - b] = 0
x(x + a)(a + root(a^2 - x^2) - b) = 0
x = 0 or x = -a
Step-by-step explanation: