Math, asked by ribhutripathi18116, 12 days ago

Answer it
And do not spam​

Attachments:

Answers

Answered by mathdude500
3

Given Question

Find the value of

\rm :\longmapsto\:\dfrac{\displaystyle\sum_{r=1}^n \frac{1}{r} }{\displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)} }

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\dfrac{\displaystyle\sum_{r=1}^n \frac{1}{r} }{\displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)} }

Let solve the numerator and denominator separately.

So, Let consider numerator

\rm :\longmapsto\:\displaystyle\sum_{r=1}^n \frac{1}{r}

Let assume that

\rm :\longmapsto\:a = \displaystyle\sum_{r=1}^n \frac{1}{r}

\bf \implies\:a = 1 + \dfrac{1}{2}  + \dfrac{1}{3}  + \dfrac{1}{4}  +  -  -  -  + \dfrac{1}{n}  -  -  - (1)

Now, Consider Denominator

\rm :\longmapsto\:\displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)}

Let us assume that

\rm :\longmapsto\:b = \displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)}

can be rewritten as

\rm :\longmapsto\:b = \displaystyle\sum_{k=1}^n \frac{2k - k}{(2n - 2k + 1)(2n - k + 1)}

\rm :\longmapsto\:b = \displaystyle\sum_{k=1}^n \frac{2k - k + 2n - 2n + 1 - 1}{(2n - 2k + 1)(2n - k + 1)}

\rm :\longmapsto\:b = \displaystyle\sum_{k=1}^n \frac{(2n - k + 1) - (2n - k + 1)}{(2n - 2k + 1)(2n - k + 1)}

\rm \:  =  \: \displaystyle\sum_{k=1}^n\bigg[\dfrac{1}{2n - 2k + 1}  - \dfrac{1}{2n - k + 1} \bigg]

\rm =\bigg[\dfrac{1}{2n - 1}+ -  -+ \dfrac{1}{3}  + \dfrac{1}{1}\bigg] - \bigg[\dfrac{1}{2n}  +  -  - \dfrac{1}{n + 2}  + \dfrac{1}{n + 1} \bigg]

Now, Consider,

\rm :\longmapsto\:a - b

\rm=\bigg[\dfrac{1}{1}+\dfrac{1}{2} +  -  -  + \dfrac{1}{n}+\dfrac{1}{n + 1} --\dfrac{1}{2n} \bigg] - \bigg[1 + \dfrac{1}{3}  + \dfrac{1}{5}  +  -  -  + \dfrac{1}{2n - 1} \bigg]

\rm \:  =  \: \dfrac{1}{2}  + \dfrac{1}{4}  + \dfrac{1}{6}  +  -  -  + \dfrac{1}{2n}

\rm \:  =  \:\dfrac{1}{2} \bigg[ \dfrac{1}{1}  + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  + \dfrac{1}{n} \bigg]

\rm \:  =  \: \dfrac{a}{2}

So,

\rm \implies\:a - b =  \: \dfrac{a}{2}

\rm \implies\:a \:  -   \: \dfrac{a}{2}  = b

\rm \implies\:\dfrac{a}{2}  = b

\rm \implies\:\dfrac{a}{b}  = 2

Hence,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{\displaystyle\sum_{r=1}^n \frac{1}{r} }{\displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)} }  = 2 \: }}

Similar questions