Math, asked by mrkuchhal, 1 year ago

answer it fast please correctly
right answer would be rewarded with brainliest

Attachments:

Answers

Answered by adithya02
0
Join OP and OQ

∠OPR = ∠OQR = 90° ---- 1 



And in ΔOPR and ΔOQR 



∠OPR = ∠ OQR = 90° (from equation 1) 



OP = OQ (Radii of same circle) 



And  



OR = OR (common side) 



ΔOPR = ΔOQR (ByRHS Congruency) 



So, RP = RQ --- 2 



And  ∠ORP = ∠ORQ --- 3 



∠PRQ = ∠ORP + ∠ORQ 



Substitute ∠PQR = 120° (given)  



And from equation 3 we get 



∠ORP + ∠ORP = 120° 



2 ∠ORP = 120° 



∠ORP = 60° 



And we know cos 0 = Adjacent/hypotenuse 



So in ΔOPR we get  



Cos ∠ORP = PR/OR 



Cos 60° = PR/OR 



½ = PR/OR (we know cos 60° = ½) 



OR = 2PR 



OR = PR + PR (substitute value from equation 2 we get) 



OR = PR  + RQ

mrkuchhal: thanx
StephCurry: always pleasure
adithya02: Um.. this is my answer
mrkuchhal: hahaha
mrkuchhal: nice
mrkuchhal: nice
mrkuchhal: nice
Answered by StephCurry
0
hope it will work.....
Attachments:
Similar questions