Math, asked by Anonymous, 7 months ago

Answer ittt !!!!................

with full explanation!!!!!​

Attachments:

Answers

Answered by Anonymous
3

ANSWER:-

Let the height of the tower BC be x and CD be the flagstaff.

Let CD = h

Let distance AB = y ,

 \angle BAC = \alpha \:  \:  \:  and \\  \\</strong></p><p></p><p><strong>[tex] \angle BAC = \alpha \:  \:  \:  and \\  \\\angle BAD = \beta

In ABC right angled at B, we have,

tan \:  \alpha  = BC/AB \\  \\ \implies \: tan \:  \alpha  =  \frac{x}{y}  \\  \\  \implies \: y =  \frac{x}{ \tan( \alpha ) } ...........(1)

In ABD right angled at B, we have,

\tan \beta = BD/AB \\  \\  \implies \:  \tan( \beta )  =  \frac{h + x}{y}  \\  \\  \implies \: y =  \frac{h + x}{ \tan( \beta ) } .........(2)

From (1) and (2) , we get

 \implies \:  \frac{x}{ \tan( \alpha ) }  =  \frac{h + x}{ \tan( \beta ) }  \\  \\ \implies \: \frac{x}{ \tan( \alpha ) }  =  \frac{h}{ \tan( \beta ) }  +  \frac{x}{ \tan( \beta ) }  \\  \\ \implies \: \frac{h}{ \tan( \beta ) }  = x( \frac{1}{ \tan( \alpha ) }  -  \frac{1}{ \tan( \beta ) } ) \\  \\ \implies \:x =  \frac{h \tan( \alpha ) . \tan( \beta ) }{ \tan( \beta ) ( \tan( \beta ) -  \tan( \alpha )  )}  \\  \\ \implies \:x =  \frac{h \:  \tan( \alpha ) }{ \tan( \beta )  -  \tan( \alpha ) }  \\  \\  \huge \bf \: height \:  \: of \:  \: the \:  \:  \: tower \:  \:  : x =  \frac{h \:  \tan( \alpha ) }{ \tan( \beta )  -  \tan( \alpha ) }

Similar questions