Math, asked by studymela86, 3 months ago

answer kardo please I'll mark you as braiiest​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\begin{gathered} \begin{array}{|c|c|} \bf{class} & \bf{frequency} \\ 1 - 3 & 7  \\3 - 5 & 8 \\5 - 7 & 12 \\7 - 9 & 2 \\9 - 11 & 1 \end{array}\end{gathered}

We know that ,

Formula for Mode is

\boxed{ \boxed{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

where,

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: l \: is \: lower \: limit \: of \: modal \: class

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: \sf{f_0} \:  is  \: frequency \:  of \:  class  \: preceding  \: modal  \: class

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: \sf{f_1} \: is \:  frequency  \: of \:  modal  \: class

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: \sf{f_2} \: is \:  frequency  \: of \: class \: succeeding \: modal \: class

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: h \: is \: height \: of \: modal \: class

Here,

Modal class is 5 - 7

So,

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: l \:  =  \: 5

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: f_0 \:  =  \: 8

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: f_1 \:  =  \: 12

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: f_2 \:  =  \: 2

 \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: h \:  =  \: 2

Thus,

\rm :\longmapsto\:{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

\rm :\longmapsto\:{{\bf{Mode = 5 + \bigg(\dfrac{12 - 8}{2 \times 12 - 8 - 2} \bigg) \times 2}}}

\rm :\longmapsto\:{{\bf{Mode = 5 + \bigg(\dfrac{4}{24 - 10} \bigg) \times 2}}}

\rm :\longmapsto\:{{\bf{Mode = 5 + \bigg(\dfrac{4}{14} \bigg) \times 2}}}

\rm :\longmapsto\:{{\bf{Mode = 5 + \bigg(\dfrac{4}{7} \bigg)}}}

\rm :\longmapsto\:{{\bf{Mode = 5 + 0.57}}}

\rm :\longmapsto\:{{\bf{Mode = 5.57}}}

Additional Information :-

\boxed{ \sf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i d_i}{ \sum f_i}

\dashrightarrow\sf Mean =A +  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h

Similar questions