Math, asked by meghakatiyar1, 1 year ago

Answer my ques plzzz.

attempt 6th question of binomial ​

Attachments:

Answers

Answered by FIREBIRD
13

Answer:

Value of a is -2 and b is -16/3

Step-by-step explanation:

We Have :-

Triangle whose vertices are ( 2a , 2 , 6 ) ; ( -4 , 3b , 10 ) ; ( 8 , 14 , 4 )

Triangle whose vertices are ( 2a , 2 , 6 ) ; ( -4 , 3b , 10 ) ; ( 8 , 14 , 4 ) Origin is the centroid of the triangle

To Find :-

Value of a and b

Formula Used :-

centroid \: of \: triangle \:  =  ( \:  \dfrac{x _{1} + y_{1} + z_{1}  }{3} \:  \dfrac{x _{2} + y_{2} + z_{2}  }{3} \: \dfrac{x _{3} + y_{3} + z_{3}  }{3})

Solution :-

 ( \:  \dfrac{x _{1} + y_{1} + z_{1}  }{3} \:  \dfrac{x _{2} + y_{2} + z_{2}  }{3} \: \dfrac{x _{3} + y_{3} + z_{3}  }{3}) \\  \\  \\ putting \: values \\  \\  \\  ( \:  \dfrac{2a - 4 +  8  }{3} \:  \dfrac{2 +3b + 14  }{3} \: \dfrac{6 - 10 + 4}{3}) \\  \\  \\ equating \: the \: equations \: to \: rhs \\  \\  \\  \dfrac{2a - 4 + 8}{3}  = 0 \\  \\  \\ 2a - 4 + 8 = 0 \\  \\  \\ 2a =  - 4 \\  \\  \\ a =  - 2 \\  \\  \\  \dfrac{2 + 3b + 14}{3}  = 0 \\  \\  \\ 2 + 3b + 14 = 0 \\  \\  \\ 3b + 16 = 0 \\  \\  \\ 3b =  - 16 \\  \\  \\ b =  -  \dfrac{16}{3}

Value of a is -2 and b is -16/3

Answered by samreetghuman2008
1
Value of a is -2and b is 26/3
Similar questions