Answer of cosec 2x dx
Answers
Answered by
1
Heya
We'll write the function cosec 2x = 1/sin 2x
We'll use the identity of double angle:
sin 2x = 2sin x*cos x
Int cosec 2x dx =Int dx/sin 2x
Int dx/sin 2x = Int dx/2sinx*cosx
We'll use Pythagoras identity:
(sin x)^2 + (cos x)^2 = 1
Int dx/2sinx*cosx = Int [(sin x)^2 + (cos x)^2]dx/2sinx*cosx
Int dx/2sinx*cosx =(1/2)*[Int sin xdx/cos x + Int cos xdx/sin x]
(1/2)*[Int sin xdx/cos x + Int cos xdx/sin x] = (1/2)[-ln(cosx) + ln(sin x)]
Int cosec 2x dx = -ln(sqrt (cos x)) + ln (sqrt(sin x)) + C
Hope it helps
We'll write the function cosec 2x = 1/sin 2x
We'll use the identity of double angle:
sin 2x = 2sin x*cos x
Int cosec 2x dx =Int dx/sin 2x
Int dx/sin 2x = Int dx/2sinx*cosx
We'll use Pythagoras identity:
(sin x)^2 + (cos x)^2 = 1
Int dx/2sinx*cosx = Int [(sin x)^2 + (cos x)^2]dx/2sinx*cosx
Int dx/2sinx*cosx =(1/2)*[Int sin xdx/cos x + Int cos xdx/sin x]
(1/2)*[Int sin xdx/cos x + Int cos xdx/sin x] = (1/2)[-ln(cosx) + ln(sin x)]
Int cosec 2x dx = -ln(sqrt (cos x)) + ln (sqrt(sin x)) + C
Hope it helps
Similar questions