Math, asked by Anonymous, 8 months ago

Answer only then if you know how to solve don't post irrelevant answers that will be reported ​

Attachments:

Answers

Answered by mysticd
6

 Given \: \frac{ (5\sqrt{3} - 4\sqrt{2})}{(4\sqrt{3} + 3 \sqrt{2})}

 = \frac{ (5\sqrt{3} - 4\sqrt{2})(4\sqrt{3}-3\sqrt{2})}{(4\sqrt{3} + 3 \sqrt{2})(4\sqrt{3} - 3\sqrt{2}) }

 = \frac{ 60 -15\sqrt{6}-16\sqrt{6} +24}{(4\sqrt{3})^{2} - (3\sqrt{2})^{2}}

 = \frac{ 84 - 31\sqrt{6}}{48 - 18}

 = \frac{ 84 - 31\sqrt{6}}{30}

Therefore.,

 \red {\frac{ (5\sqrt{3} - 4\sqrt{2})}{(4\sqrt{3} + 3 \sqrt{2})}}

 \green {=\frac{ 84 - 31\sqrt{6}}{30}}

•••♪


mysticd: please ,post only one question at a time
Answered by Anonymous
23

{\huge{\bf{\red{\underline{Question\:1:}}}}}

{\bf{\blue{\underline{Given:}}}}

 : \star{\sf{  \:  \:  \frac{5 \sqrt{3}  - 4 \sqrt{2} }{4 \sqrt{3}  + 3 \sqrt{3} } }} \\ \\

Now, Rationalize the denominator

 : \implies{\sf{  \frac{5 \sqrt{3 }  -  \sqrt{2} }{4 \sqrt{3} + 3 \sqrt{2}  } \times  \frac{4 \sqrt{3} - 3 \sqrt{2}  }{4 \sqrt{3}  - 3 \sqrt{2} }   }} \\ \\

 : \implies{\sf{  \frac{(5 \sqrt{3 }  -  \sqrt{2})(4 \sqrt{3}   - 3 \sqrt{2}) }{(4 \sqrt{3} + 3 \sqrt{2}  )(4 \sqrt{3}  - 3 \sqrt{2} })  }} \\ \\

 \boxed{\sf{  {x}^{2}  -  {y}^{2}  = (x - y)(x + y)}} \\ \\

 : \implies{\sf{  \frac{(5 \sqrt{3} - 4 \sqrt{2})(4 \sqrt{3} - 3 \sqrt{2}  )  }{( {4 \sqrt{3} })^{2}   - ( {3 \sqrt{2} })^{2} } }} \\ \\

 : \implies{\sf{  \frac{(5 \sqrt{3 \times}  \times 4 \sqrt{3} ) - (5 \sqrt{3}  \times 3 \sqrt{2}  ) - (4 \sqrt{2}  \times 4 \sqrt{3} )(4 \sqrt{2}  \times 3 \sqrt{2}) }{( {48 - 18)}}}} \\ \\

 : \implies{\sf{  \frac{(20  \times 3 ) - (15\sqrt{3 \times  2}  ) - (16 \sqrt{2 \times  3 }   ) + ({12 \times 2}) }{( {48 - 18)}}}} \\ \\

 : \implies{\sf{  \frac{(60 ) - (15\sqrt{6}  ) - (16 \sqrt{6}   ) + ({24}) }{( {48 - 18)}}}} \\ \\

 : \implies \boxed{\sf{  \frac{84 - 31 \sqrt{6} }{30}  }} \\ \\

{\huge{\bf{\red{\underline{Question\:2:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star \: {\sf{ \: \bigg[ \frac{1}{ {(27)}^{ \frac{ - 1}{3} } } + \frac{1}{ {(625)}^{ \frac{ - 1}{4} } } \bigg] }}} \\ \\

{\bf{\blue{\underline{Concept\:Used:}}}}

 \star{\sf{ \: \: \: {x}^{ \frac{p}{q} } = {x}^{p \times \frac{1}{q} } }} \\ \\

 \implies{\sf{ \: \: \: {x}^{ \frac{p}{q} } = {[(x)^{p} ]}^{ \frac{1}{q} } }} \\ \\

 \star{\sf{ \: \: \: {x}^{ m} = \frac{1}{ {x}^{-m} } }} \\ \\

{\bf{\blue{\underline{Now:}}}}

we know that ,

(3)³=27

(5)⁴=625

 : \implies{\sf{ \frac{1}{[( {3)}^{3}] ^{ \frac{ - 1}{3} } } + \frac{1}{[( {5)}^{4} ]^{ \frac{ - 1}{4} } } }} \\ \\

 : \implies{\sf{ \frac{1}{(3) ^{ \frac{ - 3}{3} } } + \frac{1}{(5) ^{ \frac{ - 4}{4} } } }} \\ \\

 : \implies{\sf{ \frac{1}{(3) ^{ - 1 } } + \frac{1}{(5) ^{ - 1} } }} \\ \\

 : \implies{\sf{ 3 + 5 }} \\ \\

 : \implies{\sf{ 8 \: Ans}} \\ \\

Similar questions